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Here’s a bread-and-butter problem whose solution is not
quite obvious: how do you use a CMM to determine
whether a radius feature is ‘in-spec’?

The American Y14.5M-1994 tolerancing standard defines a
radius tolerance as shown in Figure 1: the radius feature must
lie wholly within a zone defined by the radius limits. Figure 2

sets our problem1 : we have CMM ‘hits’ on a toleranced radius
feature, and we want to process the data to determine whether

the feature is
within radius limits
(RMin, RMax).

There are at least
three approaches to
this problem. To
discuss these with-
out a lot of mathe-
matical clutter,
we’ll recast the
problem from the
CMM coordinate
system of Figure 3

to the ‘standard’ coordinate system of Figure 4. In practical
terms, this means that
• every point in CMM coordinates must be translated by 

(-x0, -y0), where (x0, y0) are the vertex coordinates shown in

Fig. 3, and then rotated by -(φ + 90°). Alternatively,
• the data can be gathered in a local CMM coordinate system

that is rotated by (φ + 90°) relative to the master CMM coordi-
nate system, and has an origin at (x0, y0).

We shall see that the angle 2θ subtended by the radius feature is
a critical parameter. Now to the problem, cast in the coordinates
of Fig. 4.

Solution 1: Curve-fitting

The simplest solution is to fit a 2θ arc of unspecified radius
to the data, using the least-squares fitting procedures supplied
with most CMM software packages. The radius RFit of the arc
can be regarded as the ‘actual value’ of the feature, and can be
tested against the limits (RMin, RMax). Unfortunately this test
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1 There are several kinds of  radius features – tangent cylindrical, cylindrical with located center, tangent spherical, and more. Fig. 1 and this article address only cylindri-
cal tangency, and only in two dimensions for simplicity. A proper analysis should include 3-D issues.

Figure 1:  Specifying a radius
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Figure 2:  Measurement data

Figure 3:  The radius feature in CMM coordinates

 

 

Figure 4:  The radius feature in ‘standard’ coordinates
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does not conform to the zone-containment criterion specified in
Fig. 1, and in fact can declare a dataset ‘in-spec’ when none of
its points lie in the zone! (This is obvious if one regards the arc
in Fig. 2 as a fitted arc that is fortuitously tangent to the adja-
cent faces… ‘fortuitously’ because only a few fitting routines
support a tangency constraint.) A Minimax radius-fitting crite-
rion (not usually available in standard CMM software pack-
ages) could meet the Fig. 1 specification, but then the curve-fit-
ting approach would be a variant of Solution 3 (or an extended
Solution 2) below.

Solution 2: Zone Containment

Direct implementation of the Fig. 1 criterion—that is, test-
ing every point for containment in the zone—is the most literal
approach to the problem. A containment test for a point pi, with
coordinates (xi, yi), can be constructed as follows.
• See Figure 5: the zone’s bounding arcs lie on circles defined

by

(AMax – y)2 + x2 – R2
Max = 0 , (1a)

(AMin – y)2 + x2 – R2
Min = 0 , (1b)

where      AMin|Max = 
RMin|Max . (1c)

• Fig. 5 shows that the zone can be split into a central region
where the boundaries are arcs, and left and right “tail” regions
where the boundaries are an arc and a line.

• Thus the containment test for a point pi in the valid range
[– RMax sinθ to RMax sinθ] is:

when  0≤ | xi |≤ RMin sinθ (the central region):

(AMin –  R2
Min – x2

i ) ≤ yi ≤ (AMax –    R2
Max – x2

i  ) ; (2a)

when  RMin sinθ ≤ | xi |≤ RMax sinθ (tail regions):

| xi | tanθ ≤ yi ≤ (AMax –    R2
Max – x2

i  ) . (2b)

Every in-range point in the dataset must pass this test if the
radius feature is to conform to the tolerance. This approach
clearly yields a valid conformance test because it implements
the Y14.5 criterion directly, and a procedure similar to that in
Solution 3 can be designed to apply the test to the dataset. The
error sensitivity of the procedure can be studied through partial
derivatives, as discussed briefly below.

Solution 3: Induced Radii

This solution associates a unique arc with each in-range
point in the dataset, and then tests each arc’s radius for inclu-
sion in the zone. A unique arc can be associated with each point
because we know the locus of the arcs’ centers (the y-axis in
Figures 4 and 5), and that the arcs must be tangent to the part’s
linear faces; thus only one point—a data point pi—is needed to
determine the arc, and hence the radius Ri associated with pi.
The relevant equations follow from Figures 4 or 5.

Ri = Ai cosθ (3a)

R2
i = x2

i + ( Ai – yi )
2 (3b)

These equations can be solved with the Quadratic Formula to
obtain

Ri = cosθ (yi +  y2
i  cos2θ – x2

i  sin2θ ) (4)
sin2θ        

(The Quadratic Formula yields two roots, with (4) being the
larger. The smaller root corresponds to an irrelevant smaller
circle.)

The following procedure uses (4) to test the dataset for con-
formance and to report maximum and minimum ‘actual values’.

Input RMin, RMax, and θ from the PartSpec;
BigR = 0; {initialize a working variable}
SmallR = BigNumber; {e.g. 106; another working variable}
For each data point do

if (| xi | ≤ RMax sinθ ) then {valid range check}
if (yi < | xi tanθ | ) then EXIT: Out-of-Tolerance. {point
is below y = x tanθ line}
Calculate Ri per Equation (4);
if not (RMin ≤ Ri ≤ RMax ) then EXIT: Out-of-Tolerance.

cosθ
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if (Ri < SmallR) then SmallR ← Ri ;  {search for smallest
radius}
if (Ri > BigR) then BigR ← Ri ;  {search for largest radius}

else Ignore_Point: Out-of-Range;
End_do;

Report In-Tolerance and SmallR, BigR values.

This procedure returns radius values that define the tightest
zone that will bound the dataset, and its inclusion testing is
equivalent to that in Solution 2—hence the procedure is valid.

Readers should be aware that (4) computes large numbers
from small numbers (relatively large radii from relatively small
point coordinates), and that data errors are multiplied commen-
surately. Data-error effects can be studied through the use of lo-
cal expansions of the form

∆Ri =    ( 
∂Ri ∆xi )2 + ( 

∂Ri ∆yi )2  , (5)
∂xi                        ∂yi

where the ∆ terms are small changes from the exact values of
Ri , xi , yi and the partial derivatives are evaluated at (xi , yi). The
partial derivatives for (4) are

∂Ri = –
xi cosθ

(6a)∂xi              y2
i  cos2θ – x2

i  sin2θ

∂Ri = 
cosθ  

(1 +
yi cos2θ          

) . (6b)
∂yi        sin2θ y2

i  cos2θ – x2
i  sin2θ

For example: at the ‘nose’ of a radius feature, where xi = 0,

only y-errors contribute to radius errors and (5) simplifies to

∆Ri = (
cosθ (1 + cosθ) 

) ∆yi . (7)
sin2θ

Figure 6 is a graph of ( ∆Ri/∆yi ), which can be termed the y-er-
ror sensitivity, versus the subtended angle of the radius feature.
The labeled points on the graph correspond to the 60°, 90°, and
120° radius features shown in Figure 7. Note, for example, that
for a data point near the nose of a 60° feature, an error in the y
value results in an error 6.5X larger in the Ri value. (Although
the graph does not show it, the multiplier grows as the data point
moves toward the tails of the tolerance zone.) The error percent-
age does not grow, however, and the conformance-testing effec-
tiveness of Solution 3 continues to be equivalent to that of Solu-

tion 2 when both process the same set of imprecise data.2

We have assumed throughout that the feature’s subtended
angle, 2θ, is known precisely for the part being checked. If the
angle must be determined by measurement, an additional and
complicated set of error sensitivities must be studied. Finally,
we have said nothing about dataset sizes, which have a strong
effect on the reliability and repeatability of conformance tests.
This is a complicated matter that depends strongly on statistical
assumptions (amongst other things).
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3 All points in the conformance zone of  Solution 2 map through (4) into equivalent points in the zone in “induced radius space” used in Solution 3, and hence perturbed
points in one zone simply map into perturbed points in the other.
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Figure 5:  Half of the containment zone.

Figure 6:   Measurement error sensitivity.

Figure 7:  Radius features of varying ‘sharpness’.




