cosin scientific software

cosin scientific software AG

Hans-Stützle-Str. 20 81249 München GERMANY

info@cosin.eu www.cosin.eu

cosin/road

Cosin Road Modeling Documentation and User's Guide

Contents

1	Intro	oduction	1
2	Roa	d Profiles and Obstacles in cosin/io Format	2
	2.1	Data Used by All cosin/io -style Road Types	2
	2.2	cosin/io 2D Road Type drum	3
	2.3	cosin/io 2D Road Type flatbelt	6
	2.4	cosin/io 2D Road Type file	7
	2.5	cosin/io 2D Road Type function	8
	2.6	cosin/io 2D Road Type hydropulse_harmonic	9
	2.7	cosin/io 2D Road Type hydropulse_noise	9
	2.8	cosin/io 2D Road Type hydropulse_function	10
	2.9	cosin/io 2D Road Type plank or cleat	10
	2.10	cosin/io 2D Road Type pot_hole	11
	2.11	cosin/io 2D Road Type ramp	11
	2.12	cosin/io 2D Road Type roof	12
	2.13	cosin/io 2D Road Type sine	12
	2.14	cosin/io 2D Road Type sine_sweep	12
	2.15	cosin/io 2D Road Type spline	13
	2.16	cosin/io 2D Road Type stochastic_uneven	13
	2.17	cosin/io 2D Road Type tilt_table	15
3	Roa	d Profiles and Obstacles in TeimOrbit Format	15
	3.1	TeimOrbit 2D Road Type drum	15
	3.2	TeimOrbit 2D Road Type flatbelt	19
	3.3	TeimOrbit 2D Road Type hydraulic_test_rig	20
	3.4	TeimOrbit 2D Road Type plank or cleat	22
	3.5	TeimOrbit 2D Road Type pot_hole	23
	3.6	TeimOrbit 2D Road Type ramp	23
	3.7	TeimOrbit 2D Road Type roof	23

	3.8	TeimOrbit 2D Road Type sine	23		
	3.9	TeimOrbit 2D Road Type sine_sweep	23		
	3.10	TeimOrbit 2D Road Type stochastic_uneven	25		
	3.11	TeimOrbit 2D Road Type tilt_table	26		
	3.12	Superposition of TeimOrbit 2D Roads with 3D Roads	27		
л	Dom	vlar Crid Road Data Files (PCP Files)	27		
4	Regi	Jiar Grid Road Data Files (RGR Files)	21		
	4.1	Regular Grid Data Items	27		
	4.2	Regular Grid Data File Format	28		
	4.3	Combination with Soft-Soil or Snow Models	28		
5	cosir	n Road Track Files	30		
6	User	-Defined Road Models	30		
Inc	ndex 33				

Preface

This documentation describes all routines of the **cosin** simulation software which provide attributes of the road or terrain surface, being used in tire or vehicle simulations. These routines are subsumed under the product name **cosin/road**. **cosin/road** is used, for example, by the CTI tire interface to 3rd party simulation software, by cosin/mbs, and by FTire/sim.

Some data files use the **cosin/io** syntax, which is described in the separate documentation chapter cosin/io User's Guide.

All product or brand names in this documentation are trademarks or registered trademarks of their respective holders.

1 Introduction

To specify and evaluate road excitations, **cosin/road** uses nothing but one central subroutine evrmr (**cosin** environmental models: road main routine).

This routine, for example is being called by the CTI tire interface to 3^{rd} party simulation software, by cosin/mbs, and by *FTire/sim*, and receives, during initialization and by the calling program, the name of the **road data** file. On the basis of the file name and the file contents, **cosin/road** determines the data file format. It then branches into one of several evaluation routines. Among these routines are routines to evaluate:

- cosin/io-style 2D and 3D deterministic, stochastic, or measured obstacles/profiles,
- TeimOrbit-style 2D and 3D deterministic, stochastic, or measured obstacles/profiles,
- RGR regular grid road models,
- cosin road track files,
- user-defined road models,
- 3rd-party generally available road models, like the CRG format,

and more.

In the following chapters, the most important road models, from the list above, are documented in detail.

Please note that not all of the road models might be available in all simulation environments which use cosin/road. On the other hand, cosin/road might be able to call additional, proprietary road models of the calling software.

Please refer to the respective 3rd party simulation software documentation to learn more about the availability of road models in your simulation environment.

2 Road Profiles and Obstacles in cosin/io Format

If **cosin/road** detects that the road file is in *cosin/io* format, it first tries to read certain information that is common to all road types within this format. Then, depending on the respective road or obstacle type, it will search for more data that is specific to this road type.

2.1 Data Used by All cosin/io-style Road Types

If the *cosin/io* format has been recognized, **cosin/road** searches the data block \$road_type and reads the below mentioned data. This data is then used for the road profile calculations of all road types and in all subsequent invocations:

Name of input variable	Unit	Meaning
type	-	a character string out of the following list:
		• cleat
		• drum
		• file
		• function
		 hydropulse_harmonic
		 hydropulse_noise
		• plank
		• pot_hole
		• ramp
		• roof
		• sine
		• sine_sweep
		• spline
		• stochastic_uneven
		• tilt_table
		to define the type of the obstacle or irregularity.
		Typically, for each type additional parameters
		are required, described in chapter 1 or in the
		sequel
offset	mm	value to be added after calculation of the
		reference road height (that is, a shift of the
		road in vertical direction). Parameter is
		optional

Name of input variable	Unit	Meaning
start_at	m	to minimize irrelevant tire accelerations when
		momentarily applying a tire deflection, start of
		the road profile as defined by the contents of
		the data block <pre>\$road_type</pre> can be delayed by
		use of a 'ramp' at the beginning of the
		simulation With parameter <pre>start_at</pre> , the end
		of this ramp and start of the regular road is
		defined in terms of the travel distance. This
		delay does not apply to the road types drum
		and hydropulse. Additionally, several road
		types have a parameter start that marks the
		beginning of a single obstacle relative to a
		travel distance of 0. Parameter is optional
y_min	m	road height will be zero, if $y < y_{min}$.
		Parameter is optional
y_max	m	road height will be zero, if $y > y_{min}$.
		Parameter is optional
t_period	S	road height will be periodic in time, with a
		period interval as specified by this parameter
		(optional)
x_period	m	road height will be periodic in the x-coordinate,
		with a period length as specified by this
		parameter (optional)
y_period	m	road height will be periodic in the y-coordinate,
		with a period length as specified by this
		parameter (optional)
mu_factor	-	friction value factor μ to be used in tire models
		to modulate friction/stiction coefficients
		between tread rubber and road surface. If
		mu_factor is defined by an arithmetic
		expression, it may contain x, y, and t as
		independent variables: $\mu = f(x, y, t, p)$. By
		this, distributed and/or time-dependent road
		friction can easily be modeled. The function f
		may be an arbitrary arithmetic expression as
		documented in <i>cosin/io</i> , including 1D and 2D
		lookup tables, random values, etc.

Depending on the type of road chosen, more data or data blocks are searched for and read, in accordance to the following tables:

2.2 cosin/io 2D Road Type ${\tt drum}$

cosin/road looks for a data block \$drum, and reads:

Name of input variable	Unit	Meaning
diameter	m	diameter of the tire test drum. cosin/road
		assumes an outer drum, if diameter < 0
wheel_placement	-	0 above drum (default)
		1 before drum
		2 on the left of drum
		3 below drum
		4 behind drum
		5 on the right of drum
v	m/s	surface speed of the rotating drum surface (be
		sure to choose rolling_speed = 0 in data
		block \$sources. Otherwise, the wheel will
		move away from the drum)
acceleration_time	S	optional time span at beginning of the
		simulation during which the drum is
		accelerated to the nominal speed
number_cleats	-	number of extra cleats on the drum
		(number_cleats = 0 allowed)
cleat_height	mm	height of the extra cleats
cleat_starting_angle	deg	drum angle coordinate of the 1^{st} cleat
cleat_width	mm	width of the cleat, measured in transversal
		direction of the cleat (formerly called
		cleat_length)
cleat_length_x	mm	length of the cleat, measured in circumferential
		direction of the drum. Specification of
		cleat_length_x will overwrite cleat_width.
		Both differ if cleat_angle is non-zero
cleat_bevel_edge_length	mm	length of the bevel edge of the cleat, measured
		in circumferential direction of the drum. Bevel
		edge has a 45deg slope
cleat_edge_rounded	0/1/-1	1: bevel edge rounded, 0: bevel edge linear, not
		rounded, -1: bevel edge concavely rounded
cleat_angle	deg	direction of the cleat relative to the y-axis.
		Direction angle is measured in
		counter-clockwise direction, if looking from
		above onto the drum surface. cleat_angle =
		0 if the cleat is placed parallel to the drum
		rotation axis.
		NOTE: for releases prior to 2018-3 the cleat
		direction for diameter < 0 has been measured
		in clockwise direction and for diameter > 0 in
		counter-clockwise direction, using the
		deprecated item cleat_direction
mu_factor_cleat	-	friction modification factor of the cleat surface

Name of input variable	Unit	Meaning
curved_cleat_surface		0: cleat's surface is flat 1: cleat's surface is curved according to the drum surface curvature. Default value is 0 (flat)
flat_cleat_support		0: cleat is mounted on the drum such that its support, on the drum surface, is curved according to overall drum curvature 1: cleat is mounted on the drum such that its support, on the drum surface, is flat between the cleat's start and the cleat's end Default value is 0 (non-flat cleat support). This parameter is only used and relevant if curved_cleat_surface = 0
stopper_distance	mm	distance between front and rear stopper of the drum opening. Default value is 75 % of drum diameter
stopper_geometry	string	name of an optional spline data-block, containing x/z data pairs, both in [mm]. The data pairs describe the geometry of the stoppers. The data is mirrored for the rear stopper. If specified, it is recommended to check the actual appearance of drum surface and stoppers, using cosin/tools .

Name of input variable	Unit	Meaning
non_uniformity_spline	string	name of an optional spline data-block, containing phi/r data pairs. They describe the angle-dependent radial non-uniformity of the drum surface. phi (the circumferential coordinate) is to be specified in [deg]. r (the radius variation, superimposed to the nominal drum radius) is to be specified in [mm]
cleat_lat_shape_fact_spline	string	name of a spline data-block, containing y/f data pairs (y in [mm], f dimensionless). The optional data pairs describe a varying lateral geometry of the cleat(s). $f(y)$ is a factor by which the nominal cleat height is multiplied
drum_lat_shape_spline	string	name of a spline data-block, containing y/z data pairs (both in [mm]). The optional data pairs describe a varying lateral geometry of the drum surface. $z(y)$ is superimposed to the nominal drum radius
cleat_raise_time	S	<pre>start time at which the cleat is raised. Default value is 0.05s (set cleat_raise_time = -1 to raise the hight of the cleat to cleat_height at the simulation start)</pre>
cleat_raise_duration	S	time span during which the cleat is raised to reach the defined cleat height. Default value is 0.02s

If one or more of the four optional spline data-blocks, as mentioned at the end of the above table, is specified, **cosin/road** looks for the spline data in the respectively named sub-data blocks. These data blocks must contain two data columns each, for the respective independent and dependent variable. For the syntax of spline data definitions, cf. *cosin/io* documentation.

2.3 cosin/io 2D Road Type flatbelt

cosin/road looks for a data block \$flatbelt, and reads:

Name of input variable	Unit	Meaning
V	m/s	speed of the belt surface (be sure to choose
		rolling_speed = 0 in data block
		\$sources. Otherwise, wheel will move
		away from the belt)
number_cleats	-	number of the extra cleats on the belt
		(number_cleats = 0 allowed)
cleat_height	mm	height of the extra cleats
cleat_width	mm	width of the cleats, measured in the
		transversal direction of the cleat (formerly
		called cleat_length)
cleat_length_x	mm	length of the cleats, measured in the
		direction direction of the belt travel.
		Specification of cleat_length_x will
		overwrite cleat_width. Both differ if
		cleat_angle is non-zero
cleat_angle	deg	direction of the cleat relative to the y-axis.
		Direction angle is measured in
		counter-clockwise direction, if looking from
		above onto the belt surface. cleat_angle
		= 0 if the cleat is placed perpendicular to
		the belt motion
mu_factor_cleat	-	friction modification factor of the cleat
		surface
acceleration_time	S	optional time span at beginning of the
		simulation during which the belt is
		accelerated to the nominal speed

2.4 cosin/io 2D Road Type $_{\tt file}$

cosin/road looks for the data block \$file, and reads:

Name of input variable	Unit	Meaning
file_name	-	name of a file to read measured or calculated road data from. The file must be in standard or Matlab format (cf. <i>cosin/io</i> documentation). cosin/road expects equidistant road profile height data as columns of the matrix stored in the file, and optionally banking angles of the left and right track. Unit is [m] and [deg], respectively.
channel_left_track	-	column index of left track data
channel_right_track	-	column index of right track data. May coincide with channel_left_track, if only one track has been measured and/or stored
channel_left_banking_angle	-	column index of the banking angles of left track (given in deg). If this index is not specified, the banking angles of left track is set to 0
channel_right_banking_angle	-	column index of the banking angles of the right track (given in deg). May coincide with channel_left_banking_angle, if only one track has been measured and/or stored. If this index is not specified, the banking angles of right track is set to 0
meas_distance	mm	distance between two consecutive measured points in longitudinal direction. Travel distances outside of the data range, as specified in the file, are assigned a road height by means of extrapolation
track_linked_to course	0/1	<pre>flag whether the track (or road) has to be 'linked' to the actual vehicle course (that is, whether the vehicle travel path is used to determine the look-up distance in the road profile). If a vehicle will stop on the road, due to numerical reasons track_linked_to_course = 0 is recommended</pre>

2.5 cosin/io 2D Road Type function

In data block \$road_type, **cosin/road** reads:

Name of input variable	Unit	Meaning
Z	mm	road height, as a function of x, y, t and
		optional further <i>cosin/io</i> parameters p:
		z = f(x, y, t, p). This function may be an
		arbitrary arithmetic expression as
		documented in cosin/io , including 1D and
		2D lookup tables, random values, etc.
dx	mm	road surface displacement in x direction,
		specified by a function as described for z
dy	mm	road surface displacement in y direction,
		specified by a function as described for z
vx	m/s	road surface displacement velocity in ${\sf x}$
		direction, specified by a function as
		described for z. If vx is specified , dx is
		redundant and ignored
vy	m/s	road surface displacement velocity in y
		direction, specified by a function as
		described for z. If vy is specified , dy is
		redundant and ignored
mu	-	road friction factor, specified by a function
		as described for z

2.6 cosin/io 2D Road Type hydropulse_harmonic

cosin/road looks for the data block <code>\$hydropulse_harmonic</code>, and reads:

Name of input variable	Unit	Meaning
frequency_fl	Hz	hydro-pulse excitation frequencies at the
frequency_fr		front left / front right / rear left / rear right
frequency_rl		wheel
frequency_rr		
amplitude_fl	mm	hydro-pulse excitation amplitudes at the
amplitude_fr		front left / front right / rear left / rear right
amplitude_rl		wheel. Set amplitude to zero, if the
amplitude_rr		respective wheel is not to be excited
phase_fl	deg	hydro-pulse phase angles at the front left /
phase_fr		front right / rear left / rear right wheel
phase_rl		
phase_rr		

2.7 cosin/io 2D Road Type hydropulse_noise

This road type, generating individual stochastic hydro-pulse signals for up to 4 wheels, works similar to the road type stochastic_uneven, cf. below. **cosin/road** looks for the data block <code>\$hydropulse_noise</code>, and reads:

Name of input variable	Unit	Meaning
intensity_fl	-	factor to control the intensity of the 'white
intensity_fr		velocity noise' (which approximates
intensity_rl		measured spectra of road profiles pretty
intensity_rr		good), at front left / front right / rear left /
		rear right wheel
time_constant_fl	S	time-constant of the high-pass integration
time_constant_fr		filter, at front left / front right / rear left /
time_constant_rl		rear right wheel
time_constant_rr		

2.8 cosin/io 2D Road Type hydropulse_function

This road type allows to compute wheel-individual road height functions, using general arithmetic expressions, depending on x, y, and t. These arithmetic expressions can make use of all the special functions made available in **cosin/io**, including random number generators, all kinds of splines, data read from files, etc.. **cosin/road** looks for the data block <code>%hydropulse_function</code>, and reads:

Name of input variable	Unit	Meaning
z_fl	-	arithmetic expressions used to compute the
z_fr		road heights at the front left / front right /
z_rl		rear left / rear right wheel. In addition to
z_rr	the special constants available in all	
		cosin/io-style arithmetic expressions, they
		may make arbitrary use of the independent
		variables x, y, and t

2.9 cosin/io 2D Road Type $_{\tt plank}$ or $_{\tt cleat}$

cosin/road looks for the data block $plank \ or \ cleat, and reads:$

Name of input variable	Unit	Meaning
height	mm	height of the plank/cleat
start	m	start of the plank/cleat (travel distance)
pos_center	length	x-component of position of plank/cleat
		center. If set, this value overrides item
		start
width	mm	width of the plank/cleat, measured in the
		transversal direction of the plank/cleat
		(formerly called length)
length_x	mm	length of the plank/cleat, measured in the
		rolling direction. Specification of length_x
		will overwrite width. Both differ if the
		direction is non-zero
cleat_angle	angle	direction of the cleat relative to the y-axis.
		Direction angle is measured in
		counter-clockwise direction, if looking from
		above onto the road surface.
		NOTE: in releases prior to 2018-3 a data
		item direction has been used which
		measured the direction angle in clockwise
		direction. For compatibility reasons, this
		data item is still accepted but considered
		deprecated
lat_shift	mm	lateral shift of the cleat (formerly called
		lateral_shift)
bevel_edge_length	mm	length of the bevel edge of the cleat,
		measured in circumferential direction of the
		drum. Bevel edge has a 45deg slope
edge_rounded	0/1/-1	1: bevel edge rounded, 0: bevel edge linear,
		not rounded, -1: bevel edge concavely
		rounded
mu_factor_cleat	-	friction value factor of the plank/cleat

2.10 cosin/io 2D Road Type $_{\tt pot_hole}$

cosin/road looks for the data block \$pothole, and reads:

Name of input variable	Unit	Meaning
depth	mm	depth of the pot-hole
start	m	start of the pot-hole (travel distance)
length	mm	length of the pot-hole

2.11 cosin/io 2D Road Type ramp

cosin/road looks for the data block \$ramp, and reads:

Name of input variable	Unit	Meaning
height	mm	height of the ramp
start	m	start of the ramp (travel distance)
slope	-	slope of the ramp; 1 means 45deg

2.12 cosin/io 2D Road Type roof

cosin/road looks for the data block \$roof, and reads:

Name of input variable	Unit	Meaning
height	mm	height of the 'roof' (= triangle-shaped
		obstacle)
start	m	start of the 'roof' (travel distance)
length	mm	length of the 'roof', measured along x-axis

2.13 cosin/io 2D Road Type sine

cosin/road looks for the data block \$sine, and reads:

Name of input variable	Unit	Meaning	
amplitude	mm	amplitude of the sine wave	
wave_length	m	wave length of the sine wave	
start	m	start of sine the wave (travel distance)	
length	mm	length of the wave section (travel distance,	
		optional)	

2.14 cosin/io 2D Road Type sine_sweep

A sine-shaped road profile with a slowly varying frequency and amplitude is calculated in two different ways:

linear sweep: the frequency increases linearly with respect to the travel distance. The road height value z(s) as a function of travel distance, s, is calculated as follows:

$$z\left(s\right) = \left(a_s + \frac{a_e - a_s}{s_e - s_s}\left(s - s_s\right)\right) \cdot \sin\left(2\pi \cdot \left(f_s + \frac{f_e - f_s}{2\left(s_e - s_s\right)}\left(s - s_s\right)\right) \cdot \left(s - s_s\right)\right)$$

(note the factor '2' in the denominator, which is not an error!). The actual frequency (= derivative of the sine function argument with respect to travel path, divided by 2π ; this is not equal to the factor that is multiplied by $2\pi (s - s_s)$ in the sine function!) is given by:

$$f(s) = f_s + \frac{f_e - f_s}{s_e - s_s} (s - s_s)$$

logarithmic sweep: with every cycle, the wave length decreases by a constant factor. The road height value is calculated as follows:

$$z\left(s\right) = \left(a_s + \frac{a_e - a_s}{s_e - s_s}\left(s - s_s\right)\right) \cdot \sin\left(2\pi f_s s_\infty \ln \frac{s_\infty}{s_\infty + s_s - s}\right)$$

where:

$$s_{\infty} = \frac{f_e}{f_e - f_s} \left(s_e - s_s \right)$$

 s_{∞} is that travel path where theoretically an infinitely high frequency was reached, measured relative to the sweep start s_s . The actual frequency is given by:

$$f\left(s\right) = \frac{s_{\infty}}{s_{\infty} + s_s - s} f_s$$

For data supply, **cosin/road** looks for the data block \$sine_sweep, and reads:

Name of input variable	Unit	Meaning
start	m	start of the swept sine wave (travel
		distance)
end	m	end of the swept sine wave (travel distance)
amplitude_at_start	mm	amplitude of the swept sine wave at the
		start
apmlitude_at_end	mm	amplitude of the swept sine wave at the end
wave_length_at_start	m	wave length of the swept sine wave at the
		start
wave_length_at_end	m	wave length of the swept sine wave at the
		end. Must be less or equal to
		wave_length_at_start
sweep_type	0/1	0: frequency changes linearly with respect
		to travel distance
		1: wave length changes each cycle by a
		constant factor

2.15 cosin/io 2D Road Type spline

In the data block \$road_type, cosin/road reads:

Name of input variable	Unit	Meaning
periodic	0/1	0 (default): spline data is to be evaluated in
		a non periodic manner
		1: spline data is to be evaluated periodically,
		as a 'repeating sequence'

After having read the data block \$road_type, **cosin/road** looks for the spline data in sub-data block \$spline_data. This data block contains two data columns: the first is the travel distance in m, and in the second is the road height in mm. For the syntax of the spline data definitions, cf. cosin/io documentation.

2.16 cosin/io 2D Road Type stochastic_uneven

A stochastic uneven road profile, both for left and right wheels, is generated that has properties very close to measured road profiles.

To this end, in a first step discrete white noise signals are formed on the basis of nearly **uniformly** distributed random numbers, two of these assigned to every 10 mm of travel path. The distribution of these random numbers is approximated by summing up several **equally** distributed random numbers, taking advantage of the 'law of large numbers' of mathematical statistics.

Next, these values are integrated with respect to the travel distance, using a simple first order time-discrete integration filter. The reason, for not just using a pure integrator, is to cut off extremely low frequencies, which would result in large road elevation values, that are not at all affecting vehicle dynamics.

The independent variable of that filter is not time, but travel path. That is why the filter cut-off frequency Ω is controlled by a '**path** constant' $S = \Omega_c^{-1}$ instead of a **time** constant. Approximate power spectral density (PSD) of this road surface profile is given by:

$$G_{d}\left(\Omega\right) = \frac{K^{2}}{\Omega^{2} + S^{-2}} \approx G_{d}\left(\Omega_{0}\right) \cdot \left(\frac{\Omega_{0}}{\Omega}\right)^{2}$$

where:

 $S\gg 1\,m$

$$G_d\left(\Omega_0\right) = \left(\frac{K}{\Omega_0}\right)^2$$

The filter process results in two realizations of this approximate 'white velocity noise'; that means, two signals, the derivatives of which are close to white noise. Signals with that property are known as road profiles with a 'waviness' w = 2 (cf. ISO 8608). Several investigations show that the waviness derived from measured road displacement PSDs ranges from about 1.8 to 2.2.

The reference spectral density value, $G_d(\Omega_0)$, with $\Omega_0 = 1 rad/m$, is used in ISO 8608 to classify road surface profiles. These classifications are listed in the following table:

Road class	G_{i}	$_{d}\left(\Omega_{0}\right)\left[10^{-6}m\right]$	ι^3]
	min. value	mean value	max. value
A	-	1	2
В	2	4	8
C	8	16	32
D	32	64	128
E	128	256	512
F	512	1024	2048
G	2048	4096	8192
Н	8192	16384	-

The last step in the generation of the stochastic uneven road profiles is to linearly combine the two realizations $z_1(s)$, $z_2(s)$ of the above mentioned process, resulting in the left and right profile $z_l(s)$, $z_r(s)$. This is done so that these two signals are completely independent, if correlation_rl = 0.0, and identical, if correlation_rl = 1.0:

$$z_{l}(s) = z_{1}(s) + \frac{corr_{rl}}{2}(z_{2}(s) - z_{1}(s))$$

$$z_r(s) = z_2(s) + \frac{corr_{rl}}{2}(z_2(s) - z_1(s))$$

For data supply, **cosin/road** looks for the data block \$stochastic_uneven, and reads:

Name of i	Name of input variable Unit		Meaning
one of	reference_spectral_density	m ³	$\boxed{G_d\left(\Omega_0\right)}$
one or	ISO_8608_road_class	A, B,	ISO 8608 road class, according to the table
			above. Mean $G_d(\Omega_0)$ value of the
			respective class will be used
path_constant		m	'path constant' S to control the high-pass
			integration filter cut-off frequency in path
			domain. Parameter is optional, default
			value is 1000 m
correlat	ion_rl	-	variable to control the correlation between
			the left and right track: no correlation, if
			set to zero; complete correlation (that is,
			left track = right track), if set to one. Any
			value between 0 and 1 is allowed

2.17 cosin/io 2D Road Type tilt_table

cosin/road looks for the data block \$tilt_table, and reads:

Name of input variable	Unit	Meaning
y_coord_rot_axis	mm	y coordinate of the tilt-table's rotation axis
		(which is assumed to be parallel to the
		global x-axis)
start_time	S	start time of the tilt table's rotation
angular_velocity	deg/s	tilt table's angular velocity about the x-axis;
		assumed to be constant during the
		operation

3 Road Profiles and Obstacles in TeimOrbit Format

If **cosin/road** has recognized that the road data file is in TeimOrbit format (typically, the file name extension is 'rdf'), it will branch into the respective reading and evaluation routines.

All available road types in this format are described below. Please refer to the original documentation for TeimOrbit syntax rules, as well as for meaning and contents of all other data sections which are not documented here.

3.1 TeimOrbit 2D Road Type drum

The rotating drum is implemented as a 2D type road. If ROAD_TYPE is set to drum, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
diameter	length	diameter of the tire test drum. cosin/road
		assumes a outer drum, if the diameter < 0
wheel_placement	-	0 above drum (default)
		1 before drum
		2 on the left of drum
		3 below drum
		4 behind drum
		5 on the right of drum
x_coord_drum_center	length	× coordinate of the drum center in the
		global coordinate system, used for all
		wheels.
		Remark: make sure to place the drum near
		the rim center, and to keep the wheel's
		translational speed small enough not to
		leave the drum's zenith
y_coord_drum_center	length	y coordinate of the drum center in the
		global coordinate system, used for all wheels
x_coord_drum_center_wheel_i	length	× coordinate of the drum center in the
$i = 1, 2, 3, \dots, 25$		global coordinate system, used only for
		wheel i $i = 1, 2, 3, \dots, 25$
y_coord_drum_center_wheel_i	length	y coordinate of the drum center in the
$i = 1, 2, 3, \dots, 25$		global coordinate system, used only for
		wheel i $i = 1, 2, 3, \dots, 25$
number_cleats	-	number of extra cleats on the drum
		(number_cleats = 0 is allowed)
cleat_starting_angle	angle	drum angle coordinate of the 1^{st} cleat, used
		for all wheels
cleat_starting_angle_wheel_i	angle	drum angle coordinate of the 1^{st} cleat, used
$i = 1, 2, 3, \dots, 25$		only for wheel i $i = 1, 2, 3,, 25$
cleat_angle	angle	direction of the cleat relative to the drum
		spin axis. Direction is zero if the cleat is
		oriented exactly in the transversal direction
		(which is the default case). The direction
		angle is measured counter-clockwise if
		looking from above onto the drum surface.
		Default value is 0 (transversal cleat)
		NOTE: for releases prior to 2018-3 the
		cleat direction for diameter < 0 has been
		measured in clockwise direction and for
		<code>diameter</code> > 0 in counter-clockwise
		direction, using the deprecated item
		cleat_direction

Name of input variable	Unit	Meaning
curved_cleat_surface	-	0: cleat's surface is flat 1: cleat's surface is curved according to the drum surface curvature.
		Default value is 0 (flat)
flat_cleat_support		 1: cleat is mounted on the drum such that 1: cleat is mounted on the drum such that 1: cleat is mounted on the drum such that its support on the drum surface is flat between the cleat's start and the cleat's end
		Default value is 0 (non-flat cleat support). This parameter is only used and relevant if curved_cleat_surface = 0
mu_factor_cleat	-	friction modification factor of the cleat surface
stopper_distance	length	distance between the front and rear stopper of the drum opening. Default value is 75 % of the drum diameter

The drum speed is defined by one of the following alternatives:

Either:

V	length/time	constant surface speed of the drum
acceleration_time	time	time span at the beginning of the dynamic
		simulation, to accelerate the drum from
		stand-still to the nominal velocity
		Default value is 0

or:

data sub-section	arbitrarily	data pairs defining the speed-vstime
(TV_DATA)	many lines	relationship of the drum's time-dependent
	with 2 values	surface speed profile. t-values (first value in
	of type	each line) should be in ascending order
	time,	
	length/time	

The cleat's exact geometry is defined by one of the three following alternatives:

Either:

cleat_height	length	height of the cleats
cleat_width	length	width of the cleats, measured in transversal
		direction of the cleat (formerly called
		cleat_length)
cleat_length_x	length	length of the cleats, measured in
		circumferential direction of the drum.
		Specification of cleat_length_x will
		overwrite cleat_width. Both differ if
		cleat_angle is non-zero

or:

data sub-section	arbitrarily	data pairs defining the x/z relationship of
(XZ_DATA)	many lines	the cleat's cross section. No rounding of
	with data of	edges is assumed. x-values should be in
	type	ascending order. First and last z-value
	2 x length	should be zero

or:

data sub-section	arbitrarily	data triples defining the x/z relationship of
(XZR_DATA)	many lines	the cleat's cross section, together with the
	with data of	rounding radii for these data points.
	type	Rounding radii may be zero. x-values should
	3 × length	be in ascending order. First and last z-value
	_	should be zero

Optionally, the exact height geometry of the stoppers can be specified by spline data:

data sub-section	arbitrarily	data pairs defining the x/z relationship of
(stopper_geometry)	many lines	the stoppers. x-values must be non-negative
	with data of	and ascending: $x = 0$ refers to the stopper's
	type	start in longitudinal direction
	2 × length	

3.2 TeimOrbit 2D Road Type flatbelt

The rotating flat-belt test-rig is implemented as a 2D type road. If ROAD_TYPE is set to flatbelt, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
number_cleats	-	number of the extra cleats on the belt
		(number_cleats = 0 is allowed)
cleat_angle	angle	direction of the cleat relative to the belt
		lateral direction. Direction is zero if the
		cleat is orientated exactly in the transversal
		direction (which is the default case).
		Direction angle is measured in
		counter-clockwise direction, if looking from
		above onto the belt surface.
		Default value is 0 (transversal cleat)
mu_factor_cleat	-	friction modification factor on cleats

The flat-belt speed is defined by one of the following alternatives:

Either:

V	length/time	constant speed of the belt surface
acceleration_time	time	time span at beginning of the dynamic
		simulation, to accelerate the belt from
		stand-still to the nominal velocity.
		Default value is 0

or:

data sub-section	arbitrarily	data pairs defining the speed-vstime
(TV_DATA)	many lines	relationship of the belt's time-dependent
	with 2 values	surface speed profile. t-values (first value in
	of type	each line) should be in ascending order
	time,	
	length/time	

The cleat's exact geometry is defined by one of the three following alternatives:

Either:

cleat_height	length	height of the cleats
cleat_width	length	width of the cleats, measured in transversal
		direction of the cleat (formerly called
		cleat_length)
cleat_length_x	length	length of the cleats, measured in
		circumferential direction of the drum.
		Specification of cleat_length_x will
		overwrite cleat_width. Both differ if
		cleat_angle is non-zero
cleat_edge_rounded	-	0: cleat bevel edge flat
		1: cleat bevel edge rounded by a quarter
		circle

or:

data sub-section	arbitrarily	data pairs defining the x/z relationship of
(XZ_DATA)	many lines	the cleat's cross section. No rounding of
	with data of	edges is assumed. x-values should be in
	type	ascending order. First and last y-value
	2 × length	should be zero

or:

data sub-section	arbitrarily	data triples defining the x/z relationship of
(XZR_DATA)	many lines	the cleat's cross section, together with the
	with data of	rounding radii for these data points.
	type	Rounding radii may be zero. x-values should
	3 × length	be in ascending order. First and last y-value
		should be zero

Optionally, the exact height geometry of the stoppers can be specified by spline data:

data sub-section	arbitrarily	data pairs defining the x/z relationship of
(stopper_geometry)	many lines	the stoppers. x-values must be non-negative
	with data of	and ascending: $x = 0$ refers to the stopper's
	type	start in longitudinal direction
	2 × length	

3.3 TeimOrbit 2D Road Type hydraulic_test_rig

A general, time history-driven servo-hydraulic test rig excitation (eventually combined with a flat belt test rig) is implemented as another 2D type road. If ROAD_TYPE is set to hydraulic_test_rig, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
sampling_time	time	assumed time increment of the wheel
		support displacement values, if no separate
		time channel is provided
flat_belt_velocity	length/time	horizontal velocity of an additional, optional
		flat belt device
		Default value is 0 (no additional flat belt)
acceleration_time	time	time span at the beginning of the dynamic
		simulation, to accelerate the flat belt from
		stand-still to the nominal velocity
		Default value is 0

The wheel support displacement (either purely in vertical (z) direction, or fully spatial in x/y/z direction) is defined by one of the following alternatives:

Either:

data sub-section	arbitrarily	values defining the time-dependent vertical
(Z_DATA)	many lines	wheel support displacement values. Time
	with a single	values are assumed to be equidistant, with
	value of type	increment defined by sampling_time
	length	

or:

data sub-section	arbitrarily	data triples defining the x/y/z relationship
(XYZ_DATA)	many lines	of the time-dependent spatial wheel support
	with 3 values	displacement. Time values are assumed to
	each of type	be equidistant, with a increment defined by
	$3 \times \text{length}$	sampling_time

or:

data sub-section	arbitrarily	data defining the t/z relationship of the
(TZ_DATA)	many lines	time-dependent spatial wheel support
	with 2 values	displacement. Time values must be in
	each of type	ascending order. x/y displacements are set
	time, length	to zero

or:

data sub-section	arbitrarily	data defining the $t/x/y/z$ relationship of the
(TXYZV_DATA)	many lines	time-dependent spatial wheel support
	with 5 values	displacement, and in addition velocity of the
	each of type	flat belt device. Time values must be in
	time,	ascending order
	3 × length,	
	length/time	

3.4 TeimOrbit 2D Road Type $_{\tt plank}$ or $_{\tt cleat}$

If ROAD_TYPE is set to cleat, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
height	length	height of the plank/cleat
start	length	start of the plank/cleat (travel distance)
pos_center	length	x-component of position of plank/cleat
		center. If set, this value overrides item
		start
width	length	width of the plank/cleat, measured in
		transversal direction of the plank/cleat
		(formerly called length)
length_x	length	length of the plank/cleat, measured in the
		rolling direction. Specification of length_x
		will overwrite width. Both differ if
		direction is non-zero
cleat_angle	angle	direction of the cleat relative to the y-axis.
		Direction angle is measured in
		counter-clockwise direction, if looking from
		above onto the road surface.
		NOTE: in releases prior to 2018-3 a data
		item direction has been used which
		measured the direction angle in clockwise
		direction. For compatibility reasons, this
		data item is still accepted but considered
		deprecated
lateral_shift	mm	lateral shift of the cleat
bevel_edge_length	mm	length of the bevel edge of the cleat,
		measured in circumferential direction of the
		drum. Bevel edge has a 45deg slope
edge_rounded	0/1/-1	1: bevel edge rounded, 0: bevel edge linear,
		not rounded, -1: bevel edge concavely
		rounded
mu_factor_cleat	-	friction value factor of the plank/cleat

3.5 TeimOrbit 2D Road Type pot_hole

If ROAD_TYPE is set to pot_hole, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
depth	length	depth of the pot-hole
start	length	start of the pot-hole (travel distance)
length	length	length of the pot-hole

3.6 TeimOrbit 2D Road Type ramp

If ROAD_TYPE is set to ramp, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
height	length	height of the ramp
start	length	start of the ramp (travel distance)
slope	length	slope of the ramp; 1 means 45deg

3.7 TeimOrbit 2D Road Type roof

If ROAD_TYPE is set to roof, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
height	length	height of 'roof' (= triangle-shaped obstacle)
start	length	start of 'roof' (travel distance)
length	length	length of 'roof', measured along x-axis

3.8 TeimOrbit 2D Road Type sine

If ROAD_TYPE is set to sine, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
amplitude	length	amplitude of the sine wave
wave_length	length	wave length of the sine wave
start	length	start of the sine wave (travel distance)
length	length	length of the wave section (travel distance,
		optional)

3.9 TeimOrbit 2D Road Type sine_sweep

A sine-shaped road profile with a slowly varying frequency and amplitude is calculated in two different ways:

linear sweep: the frequency increases linearly with respect to the travel distance. The road height value z(s), as function of travel distance s, is calculated as follows:

$$z(s) = \left(a_s + \frac{a_e - a_s}{s_e - s_s}(s - s_s)\right) \cdot \sin\left(2\pi \cdot \left(f_s + \frac{f_e - f_s}{2(s_e - s_s)}(s - s_s)\right) \cdot (s - s_s)\right)$$

(note the factor '2' in the denominator, which is not an error!). The actual frequency (= derivative of the sine function argument with respect to travel path, divided by 2π ; this is not equal to that factor that is multiplied by $2\pi (s - s_s)$ in the sine function!) is given by:

$$f(s) = f_s + \frac{f_e - f_s}{s_e - s_s} (s - s_s)$$

logarithmic sweep: with every cycle, the wave length decreases by a constant factor. The road height value is calculated as follows:

$$z(s) = \left(a_s + \frac{a_e - a_s}{s_e - s_s}(s - s_s)\right) \cdot \sin\left(2\pi f_s s_\infty \ln \frac{s_\infty}{s_\infty + s_s - s}\right)$$

where:

$$s_{\infty} = \frac{f_e}{f_e - f_s} \left(s_e - s_s \right).$$

 s_{∞} is that travel path where theoretically an infinitely high frequency was reached, measured relative to sweep start s_s . The actual frequency is given by:

$$f\left(s\right) = \frac{s_{\infty}}{s_{\infty} + s_{s} - s} f_{s}$$

The swept sine road is implemented as a 2D type road. If ROAD_TYPE is set to sine_sweep, cosin/road searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
start	length	start of the swept sine wave (travel
		distance)
end	length	end of the swept sine wave (travel distance)
amplitude_at_start	length	amplitude of the swept sine wave at the
		start
amplitude_at_end	length	amplitude of the swept sine wave at the end
wave_length_at_start	length	wave length of the swept sine wave at the
		start
wave_length_at_end	length	wave length of the swept sine wave at the
		end. Must be less or equal to
		wave_length_at_start
sweep_type	0/1	0: frequency changes linearly with respect
		to travel distance
		1: wave length changes each cycle by a
		constant factor

3.10 TeimOrbit 2D Road Type stochastic_uneven

A stochastic uneven road profile for both left and right wheels is generated, that has properties very close to measured road profiles.

To this end, in a first step discrete white noise signals are formed on the basis of nearly **uniformly** distributed random numbers, two of these assigned to every 10 mm of travel path. The distribution of these random numbers is approximated by summing up several **equally** distributed random numbers, taking advantage of the 'law of large numbers' of mathematical statistics.

These values are then integrated with respect to travel distance, using a simple first order time-discrete integration filter. The reason, for not just using a pure integrator, is to cut off extremely low frequencies, which would result in large road elevation values, not at all affecting vehicle dynamics.

The independent variable of that filter is not time, but travel path. That is why the filter cut-off frequency Ω is controlled by a '**path** constant' $S = \Omega_c^{-1}$ instead of a **time** constant. Approximate power spectral density (PSD) of this road surface profile is given by:

$$G_{d}\left(\Omega\right)=\frac{K^{2}}{\Omega^{2}+S^{-2}}\approx G_{d}\left(\Omega_{0}\right)\cdot\left(\frac{\Omega_{0}}{\Omega}\right)^{2}$$

where:

 $S \gg 1 \, m$

$$G_d\left(\Omega_0\right) = \left(\frac{K}{\Omega_0}\right)^2$$

The filter process results in two realizations of this approximate 'white velocity noise'; that means, two signals, the derivatives of which are close to white noise. Signals with that property are known as road profiles with a 'waviness' w = 2 (cf. ISO 8608). Several investigations show that the waviness derived from measured road displacement PSDs ranges from about 1.8 to 2.2.

The reference spectral density value $G_d(\Omega_0)$, with $\Omega_0 = 1 \, rad/m$, is used in ISO 8608 to classify road surface profiles. These classifications are listed in the following table:

Pood class	$G_d\left(\Omega_0 ight)\left[10^{-6}m^3 ight]$			
	min. value	mean value	max. value	
A	-	1	2	
В	2	4	8	
C	8	16	32	
D	32	64	128	
E	128	256	512	
F	512	1024	2048	
G	2048	4096	8192	
Н	8192	16384	-	

The last step in the generation of the stochastic uneven road profiles is to linearly combine the two realizations $z_1(s)$, $z_2(s)$ of the above mentioned process, resulting in the left and right profile $z_l(s)$, $z_r(s)$. This is done so

that these two signals are completely independent, if correlation_rl = 0.0, and identical, if correlation_rl = 1.0:

$$z_{l}(s) = z_{1}(s) + \frac{corr_{rl}}{2}(z_{2}(s) - z_{1}(s))$$

$$z_r(s) = z_2(s) + \frac{corr_{rl}}{2}(z_2(s) - z_1(s))$$

The stochastic uneven road is implemented as a 2D type road. If ROAD_TYPE is set to stochastic_uneven, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable		Unit	Meaning
	reference_spectral_density	m ³	$G_d\left(\Omega_0 ight)$
one or	ISO_8608_road_class	A, B,	ISO 8608 road class, according to the table
			above. Mean $G_d(\Omega_0)$ value of the
			respective class will be used
path_constant		m	'path constant' S to control the high-pass
			integration filter cut-off frequency in path
			domain. Parameter is optional, default
			value is 1000 m
correlation_rl		-	variable to control the correlation between
			the left and right track: no correlation, if
			zero; complete correlation (that is, left track
			= right track), if one. Any value between 0
			and 1 is allowed

3.11 TeimOrbit 2D Road Type tilt_table

If ROAD_TYPE is set to tilt_table, **cosin/road** searches for, and reads, the following data items in the section [PARAMETERS]:

Name of input variable	Unit	Meaning
y_coord_rot_axis	mm	y coordinate of the tilt-table's rotation axis
		(which is assumed to be parallel to the
		global x-axis)
start_time	S	start time of the tilt table's rotation
end_time	S	end time of the tilt table's rotation (tilt
		table continues rotating throughout
		simulation if not set)
angular_velocity	deg/s	tilt table's angular velocity about the x-axis;
		assumed to be constant during the
		operation

3.12 Superposition of TeimOrbit 2D Roads with 3D Roads

All TeimOrbit 2D roads can be superimposed by a triangulated or a RGR-type 3D road. This is achieved by specifying the name of the respective 3D road data file in the data section [MODEL] of the 2D road data file. This technique, for example, can be used to define a non-flat hydraulic test-rig cylinder surface by means of a RGR data:

Name of input variable	Unit	Meaning
superimpose_data_file	-	name of the 3D road data file (triangular or RGR type) to be superimposed onto the 2D data

4 Regular Grid Road Data Files (RGR Files)

This chapter describes the format of the Regular Grid Road Data files (RGR-files). RGR-files can be used to describe a high resolution road surface measurements for use with FTire or other high-end tire models in road load simulations. The data format is designed such that both memory amount and evaluation effort is as small as possible.

4.1 Regular Grid Data Items

In order to make the evaluation of road surface data as efficient as possible, it is advantageous to use data points that are equally spaced in x- and y-direction. Such data is called regular grid data.

Figure 1: Regular Grid Geometry

Regular grid core data are defined by

- the grid's minimum x-value: x_{min}
- the grid's constant mesh-size in x-direction: riangle x
- the number of grid nodes in x-direction: \boldsymbol{n}_x
- $\bullet\,$ the grid's minimum y-value: y_{min}

- the grid's constant mesh-size in y-direction: riangle y
- the number of grid nodes in y-direction: n_y
- the surface's z-values in the grid points: $z_{ik} = z(x_i, y_k)$, where $x_i = x_{min} + (i-1) \Delta x$ and $y_k = y_{min} + (k-1) \Delta y$.

Typically (but not necessarily), the x-direction is close to the vehicle's main driving direction. The z_{ik} -values are stored 'x-strip-wise', in the following sequence:

```
z_{11}, z_{12}, \ldots, z_{1n_y}, z_{21}, z_{22}, \ldots, z_{2n_y}, \ldots, z_{n_x1}, z_{n_x2}, \ldots, z_{n_xn_y}
```

Default length unit of all x, y, and z-values is millimeter [mm], if not specified differently in the data file header (see below).

RGR-files may also contain curved center-line data, location-dependent variable friction values, soft soil data (see below), and more. Please refer to *cosin/tools for Roads* for more.

4.2 Regular Grid Data File Format

cosin/tools for Roads provides extensive support in generation, modification, and analysis of RGR-files. A detailed description of the losslessly compressed binary file format is available for certified development partners.

4.3 Combination with Soft-Soil or Snow Models

If using the formatted ASCII header line, beginning with the key-word \$RGR_data, an additional soft-soil model can be activated and parameterized within this line. This soil-model will take **FTire**'s contact forces to modify the actual road surface geometry.

At present, both a simple **place-holder model** as well as the so-called **Bekker-Wong model** are implemented. For the foundations of the Bekker-Wong model, please refer to Wong's textbook (*Terramechanics and Off-Road Vehicle Engineering, Butterworth-Heinemann, Amsterdam 2010*). For details on how to select the model, please refer to the *cosin/tools for Roads* documentation.

The **place-holder model** is described by the following local dependency between contact pressure and road surface sinking:

$$F_d(\dot{z}) + k(z_0 - z) + p_{cont} = 0$$

with: $z_o(x, y)$ undeformed surface height, z(x, y) deformed surface height, and $p_{cont}(x, y)$ local contact pressure.

The damping term F_d is strongly nonlinear. The large slope for positive height changes ensures a persistent soil compaction:

Figure 2: Non-Linear Damping Characteristic in Soft-Soil Placeholder Model

The model is quantified by two parameters (together with typical values):

$$k = 0.025 \frac{MPa}{mm}$$
$$d = 0.1 k$$

(optionally, the model can be activated only inside a rectangle $[x_{soil,min}, x_{soil,max}] \times [y_{soil,min}, y_{soil,max}]$). This simple model is activated with the following entries in the header line:

• \$RGR_data xmin=0 dx=5 nx=1000 ymin=-200 dy=5 ny=80 mu=1.0
soil_model=1000 smp1=0.025 smp2=0.1 !

(the optional rectangle bounds $x_{soil,min}$, $x_{soil,max}$, $y_{soil,min}$, $y_{soil,max}$ are specified by smp3, smp4, smp5, and smp6).

The optional additional parameter max_sim_vel (maximum sinkage velocity) limits the local increase in sinkage per time unit, in order to prevent unrealistic deep sinkage due to short-term peak forces. Its effect is similar to a nonlinear sinkage damping. The physical unit is [length unit]/s, default value, and reasonable for most applications, is 2 m/s.

The model type 1000, selected by the entry soil_model=1000, activates the simple model as described above (more model types might follow later). The entries smp1=0.025 and smp2=0.1 specify the numerical values of the two respective model parameters.

In case of a soft soil model, the grid data section may be omitted completely. In this case, a surface which is originally flat is assumed. Note that for a rigid surface, this is formally allowed as well, but would not be meaningful. There are simpler ways to describe a perfectly flat and rigid surface.

If no grid data is given, the grid resolution can be adapted automatically to the tire's tread resolution. This is done if dx and dy are not set. Moreover, rather than specifying nx and ny (which would lead to a grid of unknown extent), xmax and ymax may be defined in this case:

• \$RGR_data xmin=0 xmax=5000 ymin=-200 ymax=200 mu=1.0 soil_model=1000 smp1=0.025 smp2=0.1

5 cosin Road Track Files

If the road data file is in **cosin/io** format, but does not contain the data block \$road_type, it is interpreted as **cosin road track file**. **cosin** road track files, among others, give a graphical representation of

- road tracks,
- road shoulders,
- center lines,

and more. Road track files also provide an easy-to-apply definition of nominal tracks to follow with driver models, and full 3D road profiles including road transversal inclination, banked curves, etc.

6 User-Defined Road Models

If the road data file has file extension **urm**, **cosin/road** assumes that the user provides a road evaluation routine, compiled into a dynamically loadable library named

- urm.dll in Windows, and
- liburm.so (or liburm.dylib, respectively) in Linux and OS X.

This library is searched for, according to the rules set by the respective operating system. Safest way, in either case, to make it available is to put it into the working directory from which **cosin/road** and its calling solver is invoked. The library must contain a C or C++ function with the following prototype:

The sole task of this routine is to provide:

- road height z,
- road surface velocities v_x , v_y , v_z , and
- friction modification factor μ ,

all being functions of:

- time t, and
- location x, y.

cosin/road passes to this routine the name of the *data file*, with extension *urm* as mentioned above, which is to be read, and interpreted, under the sole responsibility of the user-defined road model.

The meaning of the invocation parameters are as follows:

Parameter	C/C++ type	Data flow	Unit	Meaning
ti	int	in	-	wheel index. Typically: 1=fl, 2=fr, 3=rl, 4=rr,

Parameter	C/C++ type	Data flow	Unit	Meaning
t	double	in	S	simulation time, provided by cosin/road
x	double	in	m	x-comp. of location where the road height is
				needed; provided by cosin/road . If road is
				moved with cti function ctiSetRoadMotionData
				or similar, position is relative to this moving
				coordinate system
У	double	in	m	y-comp. of location where the road height is
				needed; provided by cosin/road . If road is
				moved with cti function ctiSetRoadMotionData
				or similar, position is relative to this moving
				coordinate system
z	double*	out	m	road height. If road is moved with cti function
				ctiSetRoadMotionData or similar, height is
				relative to this moving coordinate system
vx	double*	out	m/s	x-comp. of road surface velocity relative to the
				global coordinate system (non-zero for example
				in drum or flat-belt simulations). If road is
				moved with cti function ctiSetRoadMotionData
				or similar, velocity is relative to this moving
				coordinate system
vy	double*	out	m/s	y-comp. of road surface velocity relative to the
				global coordinate system. If road is moved with
				cti function ctiSetRoadMotionData or similar,
				velocity is relative to this moving coordinate
				system
vz	double*	out	m/s	z-comp. of road surface velocity relative to the
				global coordinate system (non-zero for example
				in hydraulic 4-poster simulations). If road is
				moved with cti function ctiSetRoadMotionData
				or similar, velocity is relative to this moving
				coordinate system
mu	double*	out	-	friction characteristic modification factor (value
				is typically 1.0, which means no modification of
				the friction characteristic as defined by the tire
				model)
ier	int*	out	-	error code, must be 0 if road evaluation (or file
				opening and reading) was successful, any value
				other than 0 else

Parameter	C/C++ type	Data flow	Unit	Meaning
file	char*	in	string	name of road data file (provided by
				cosin/road). May or may not contain the
				path; the exact interpretation of the string is
				according to the rules of the respective
				operating system. It is up to the user routine
				to decide when this file is to be opened and
				read. The name will be provided in every call
				to urm. However, typically, it needs to be read
				only during first call of urm with the respective
				wheel index. urm might have to save the
				information in the file in local but static
				variables.

Below, you find a listing of a most simple example of such a C function. The code (**urm.c**) is contained in sub-folder **Interfaces/user_code** of the **cosin** installation directory:

```
/* place holder for user defined road model (URM) */
#include <stdio.h>
extern void urm (int ti, double t, double x, double y, double*z,
            double*vx, double*vy, double*vz, double*mu, int*ier, char*file) {
  static int first=1;
   if (first) {
     printf("\nthis is the demo user road model, using data file %s..\n",file);
     first=0;
  }
   /* terminate road model */
  if (t>=0.9e60) {
     return;
  }
  *z=0.0;
  if (x>1.0 && x<1.2) *z=0.02;
  *vx=0.0;
  *vy=0.0;
  *vz=0.0;
  *mu=1.0;
   *ier=0;
}
```

Index

cleat, 10, 22 drum, 3, 15 file, 7 flatbelt, 6, 19 function, 8 hydraulic_test_rig, 20 hydropulse_function, 10hydropulse_harmonic, 9 hydropulse_noise, 9 plank, 10, 22 pot_hole, 11, 23 ramp, 11, 23 roof, 12, 23 sine, 12, 23 sine_sweep, 12, 23 spline, 13 stochastic_uneven, 13, 25 tilt_table, 15, 26