

Dytran Guide BASIC FSI SETUP

In this example a rigid box dropped on a open water environment. This example is extracted and modified from the Dytran DYT101 Training Seminar as a basic introduction to Dytran FSI setup.

Other standard training course workshops are shown on the next page.

For more information please contact MSC Software.

MSC Software		MSC Software
WORKSHOP 2 FLUID INTERACTION	WORKSHOP 4 EFP MINE	WORKSHOP 7 Blast Inside Container
MSC Software	MSC Software	
WORKSHOP 3.1 BIRDSTRIKE	WORKSHOP 5 BUNKER BLAST	WORKSHOP 8.1 SUBMARINE UNDEX
MSC Software		
WORKSHOP 3.2 BIRD STRIKE WITH FAILURE	WORKSHOP 6.1 LAGRANGE vs EULER	WORKSHOP 8.2 SUBMARINE UNDEX SUBMESHES

This workshop is integral to the training notes detailing the pre- and postprocess steps.

COURSE NOTES SECTION 7: Patran Model Processing for Dytran FSI

- 1. Get familiar with the Patran Dytran preference for FSI setup
- 2. How to define a simple Euler mesh and assign initial states using a basic material model

COURSE NOTES SECTION 8: Dytran FSI Process

- 1. How to run Dytran FSI
- 2. Understanding the Dytran ouput files

COURSE NOTES SECTION 9: Dytran FSI Results Processing

1. How to convert and view FSI results with Paraview

Step 1. Files: Create a New Database

	Patran 2017		
Menu Home	N #		Options 🔹 📝
	S S S S S S S S S S S S S S S S S S S		
	Orientation Misc. Special	Group Picking	
: File- Group- View Viewing- Display- Preferences- Tools- Help- Utilities-			
 The Group-View View of Dipley- Preferences- Tools- Help- Utilities- New- Open CriteR Open Recent CriteR Session Print Session Print Guit CriteS Guit CriteS Guit CriteS Guit CriteS Session Print Open new database and name 2_w01. a) Open File Menu and click New. b) Type box_drop under File name and click OK. c) Select Dytran for Analysis Code and click OK 	New Database Template Database Name C:\MSC.Software\Patran\20170b/template.db C:\MSC.Software\Patran\20170b/template.db Change Template Modify Preferences Set Working Directory to Database Location Look in: C:\Temp Wy Computer My Computer My Computer Pesktop Documents File name: *.db Files of type: Database Files (*.db)	RHS Window New Model Preference Model Preference for: W1.db Tolerance Based on Model Default Approximate Maximum Model Dimension: 10.0 Analysis Code: MSC.Dytran Cox Cancel OK Reset	
		re [.]	

Step 2.1 Geometry: Create / Coord

Menu	Hor	me Geor	netry	Properties	Loads/BC	Cs Mest	hing Analy	sis Results	Patran 2017	- 🖻 × (a) @ Options + 🔀
<u></u>	~		6	2.	1	1	-	<i>a</i> ~ 🛤 😝	* 🛠 🔓 篓 🛤 🌮 💸	
Select	Select	Select	Select	Select	Select	Select	Select	1 1	Show Edit Verify Renumber Delete Associate Disassociate	
Points	Curves	Surfaces	Solids	Coordinates	Planes	Vectors	P-Shapes	Transform	Geometry Actions	
N 🖾 🛙	2 🗋 🗅 🖻 🖄 🖗 🖶 🗑 🗰 🗄 🖶 🗁 🗮 🗮 🖉 🔟 🔟 🖾 🕲 🚳 🕋 🎬 🕵 🦲 🎞 🚩 🐂 👘 🕫									

File+ Group+ Viewport+ Viewing+ Display+ Preferences+ Tools+ Help+ Utilities+

				RHS Window
Crea Coor	te a rotated	e box_drop.db - default_viewport - default_group - Group	RHS Window Geometry Rotation Parameters First Rotation Axis: About Axis 1 * C Angle of Rotation 30 d	Geometry Action: Create Object: Coord Method: Euler Coord ID List 1
a)	Geometry: Create / Coord / Euler		Second Rotation	Type: Rectangular Refer. Coordinate Frame Coord 0
b)	Select Rotation Parameters	ZY	Angle of Rotation 0.0	Rotation Parameters b
C)	Set About Axis 1	*		✓ Auto Execute Origin
d)	Set rotation at 30°		Axis: About Axis 3 Angle of Rotation	f
e)	Click OK		0.0	
f)	Click Apply .	Z XY		
		MSC Software [.]	OK Cancel	MSC Software* Simulating Reality, Delivering Certainty*

Step 2.2 Geometry: Create / Solid / XYZ

Menu	Hon	ne Geor	netry	Properties	Loads/BC	Cs Mesh	ing Analy	sis Results	Patran 2017	- 6 × ×
Select	Select	Select	Select	Select	Select	1 Select	Select	Ø ≁ 🛤 😝 ,⊱ 🛃 1	The effective of the second se	
Points	Curves	Surfaces	Solids	Coordinates	Planes	Vectors	P-Shapes	Transform	Geometry Actions 2	

File+ Group+ Viewport+ Viewing+ Display+ Preferences+ Tools+ Help+ Utilities+

- a) Geometry: Create / Solid / XYZ
- b) Select Coord 1 as Reference Coord
- c) Click Apply.

Step 3.1 Elements: Create / Mesh / Surface

Step 3.2 Elements: Equivalence / All

Simulating Reality, Delivering Certainty

Step 4. Materials: Create / Isotropic

Define	material	properties.

Geometry

Orthotropic

1

XX

2D

Anisotropi

File - Group - Viewport - Viewing - Display - Preferences - Tools -

- a) Materials: Create / Isotropic / Manual Input.
- b) Enter rigid for Material Name.

Properties Loads/BCs

Meshing

1 5 2

OD Properties

1D Properties

C 🖬 🖂

2D Properties

- c) Click on Input Properties.
- d) Constitutive Model: Rigid (MATRIG) Valid For: Shell
 - Rigid Body Properties: Defined
- e) Enter:

7850 for Density,

210e9 for Elastic Modulus

- 0.3 for Poisson Ratio
- -10 for Initial Z-Vel of CG
- f) Click **OK**.
- g) Click Apply.

0	· · · · · · · · · · · · · · · · · · ·	
Solid So	id 🏔 🖾 🗶 🕋 📾 😹	
	HS Window	×
	Materials	
1	Action: Create *	
	Object: Isotropic *	
	Method: Manual Input *	
	Existing Materials	
	Filter Mate Dame rigid	
	Description Date: 19-May-17 Time: 22:29:18	
	Input Properties	
	Appl	*

Patran 2017

input Options	
onstitutive Model:	Rigid (MATRIG) -
lid For:	Shell T
gid Body Properties:	Defined -
roperty Name	Value
ensity =	7850
lastic Modulus =	210e9
oisson Ratio =	0.3
ass =	
-coordinate of CG =	
-coordinate of CG =	
-coordinate of CG =	
nertia Ixx about CG =	(e)
nertia Ixy about CG =	
nertia Ixz about CG =	
nertia Iyy about CG =	
nertia Iyz about CG =	
nertia Izz about CG =	
nitial X-Vel. of CG (Vx) =	
nitial Y-Vel. of CG (Vy) =	
nitial Z-Vel. of CG (Vz) =	-10
nitial X-Rot. about CG (Wx)) =
nitial Y-Rot. about CG (Wy)	=
nitial Z-Rot. about CG (Wz)	=
urrent Constitutive Models:	
(f)	
OK	Clear Cancel

11

Step 5. Properties: Create / 2D / Shell

Opt

Define properties for the surface

- a) Properties: Create / 2D / Shell
- Enter **box** for Property Set b) Name.
- Option(s): Homogeneous / C) Default(PSHELL)
- d) Click Input Properties.
- Select rigid for Material e) Name.
- Enter 0.001 for Sheet f) Thickness.
- Click OK. g)
- h) Select Application Region
- Select All elements for i) Select Members
- Click Add then click OK. j)
- k) Click Apply

🔵 🤣 🗱 🗱 🗱 📾		
agrangian Eulerian 🎧 🔀 💥 🖀 🗃 🗃	P Input Properties	
3D Properties Property Actions Fields	Default PSHELL (CQUAD4)	
H Window	Property Name	Value
Element Proper	Material Name	m:rigid e
Action: Create	[Material Orientation]	
Object: 2D *	Thickness	0.001 (f)
Type: Shell -	[Hourglass Suppr.Meth.]	
	[Inpl.Hourgl.Damp.Coeff.]	
Sets By: Name 🔻 🖺	[Warp.Hourgl.Damp.Coeff.]	
	[Twist.Hourdl.Damp.Coeff.]	
	Field Definitions	
Filter		
Property Set Name		
Options:		
Homogeneous • (C)	ок д	Clear
Default (PSHELL) 🔻	<u></u>	
Input Properties (
Select Application Region 1		
Apply		
(k)		
v		

Step 6. Loads/BCs: Create / Rigid Body Object

Menu Hom	e Geometry Properties Loads/BCs Meshing Analysis Results	Patran 2017						
Displacement Fo	* Follower Body Velocity BJOIN KJOIN Rotational Detonation Wave Generator Nodal	😌 📩 🖣 💉 🏂 🍐 💌 RHS Window	ial Conditions	 No No No No Rigid 	LBC Actions	Create Load Case Load Cases	IBC Fields	
N 🖾 🗋 🖼 🗖	◎⋌⋦⊕◎●धは~ぉヰ┓┍ӊま∥⊠⋓⊠⊎◎	Load/Boundary Conditions						
Crea rigid a) b)	te constraints on the body. Loads/BCs: Create / Rigid Body Object. Enter rbo for New Set	Action: Create V (2) Object: Rigid Body Object V Type: Nodal V Current Load Case: Default Type: Time Dependent	P Inpu Load/E 1.0 Filter *	t Data IC Set Scale Fact Specification	or Filte	r dy or Rigid Su	face	
c) d)	Name. Click on Input Data . Select rigid material	Existing Sets	Rigid	Body Constraint		Time Depen	dent Fields	1256
e)	Set fixed DOF for UX, UY, RY, RZ		⊻ UX V UY	e	□ RX V RY V RZ			RHS Window
f)	Click OK .		Enfor	ed Transl. Vel. V	ector	* Time Dep	endence	Geometry Filter
g)	Click Select Application Region.	New Set	<0.,0 Enford <,0.,	.,> ced Rot. Vel. Vec D.> Vector	tor	* Time Dep	endence	Geometry ● FEI(h)
h)	Select FEM for Geometry Filter.		<,,> Mome <,,>	nt Vector		* Time Dep	endence	Rigid Reference Node Node 36
i)	Select Any node.			OK C			R	
i)	Click OK .	Input Data						ок (ј)
k)	Click Apply .	Select Application Regio g	MSCX	Software [.]				
		▼						MSC Software*

Step 7. Loads/BCs: Create / Coupling

15

Simulating Reality, Delivering Certainty"

Step 8.1 Materials: Create / Isotropic Patran 2017 Loads/BCs Geometry Properties Meshing ---🍅 💰 🌒 XX 器 曲 協 28 38 3% a 数数 Lagrangian Eulerian 🏩 🔀 💥 Isotro 2D \$a 12 1 Solid Solid 1D Properties 3D Properties Orthotropic Anisotropi **OD** Properties 2D Properties **RHS Window** × 1 S 5 11 Materials File-Group+ Viewport+ Viewing+ Display+ Preferences+ Tools+ . Action: Create * Object: Isotropic * Input Options Method: Manual Input * Constitutive Model: Ideal Gas (DMAT) -Define Euler material properties. d Valid For: Eulerian Solid (Hydro) -2 a) Materials: Create / Isotropic / Manual Existing Materials Property Name Value rigid Input. 1.14 Density = Specific Heat Ratio (GAMMA) = 1.4 b) Enter air for Material Name. e 287 Gas Constant (R) = c) Click on Input Properties. Spec. Heat at Const. Volume = Spec. Heat at Const. Pressure = d) Constitutive Model: Ideal Gas (DMAT) Viscosity Coefficient = Valid For: Eulerian Solid e) Enter: Filter 1.14 for Density, Materia me 1.4 for GAMMA b air Current Constitutive Models: 287 for R Description Click OK. f) Date: 19-May-17 Time: 22:29:18 g) Click Apply. OK Clear Cancel f С Input Properties ... Change Material Status ... Apply σ ulating Reality, Delivering Certainty 16

Step 8.2 Materials: Create / Isotropic Patran 2017 Ontions * Loads/BCs Properties Meshing ~ 1 1 5 2 **** e) Lagrangian Solid 20 1 2 1 **RHS Window** x 1D Properties 3D Pro Orthotropic **OD** Properties 2D Properties Materials 2 11 ER 1 . Eile -Group+ Viewport+ Viewing+ Display+ Preferences+ Tools+ Action: Create * Object: Isotropic * Input Options Method: Manual Input -Constitutive Model: LinFluid (DMAT) d Define Euler material properties. Valid For: Eulerian Solid (Hydro) * 2 Existing Materials a) Materials: Create / Isotropic / Manual air Property Name Value rigid Input. 1000 Density = b) Enter water for Material Name. Bulk Modulus = 2.2e9 e Cavitation Pressure = c) Click on Input Properties. Volume Cutoff Tolerance d) Constitutive Model: LinFluid (DMAT) Hydro, Volume Limit = Valid For: Eulerian Solid Filter e) Enter: 1000 for Density, Material Name b water 2.2e9 for Bulk Modulus Click OK. f) Current Constitutive Models: Description g) Click Apply. Date: 19-May-17 Time: 22:29:18 OK Clear Cancel С Input Properties ... Change Material Status ... Apply lating Reality, Delivering Certainty 17

Step 9. Properties: Create / 3D / Eulerian

Patran 2017

I nome deprinting analysis kesults	
よ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	RHS Window
pic Orthotropic Anisotropic Composite 0D Properties 1D Properties 2D Properties 3D Properties Troperty Actions Fields	Element Properties
D 译 函 微 紧 条 载 @ ● H 性 * * * # H H H * * * # H H H * * * # H * * * # # * * * # * * * *	Action: Create -
	Object: 3D -
efine properties for the surface	Type: Eulerian Solid -
a) Properties: Create / 3D / Eulerian	
Solid	Sets By: Name 🔻 🖺
b) Enter euler fer Drenert (Cet Nerre	
b) Enter euler for Property Set Name.	
c) Options: MMHYDRO (PEULER <u>1</u>)	
d) Click Apply	Filter *
	Property Set Name
	euler b
	Options:
	MM/Hydro (PEULER1) - C
	Input Properties
	Select Application Region
	Apply
	Apply d

are

Simulating Reality, Delivering Certainty"

Step 10. Loads/BCs: Create / Mesh Generator

Step 11.1 Loads/BCs: Create / Init Cond Euler

Step 11.2 Geometry: Create / Coord

	Patran 20	017	
Menu Home Geometry Properties Loads/BCs Meshing Anal Image: Select Sel	xsis Results	Disassociate	Options - D
: File+ Group+ Viewport+ Viewing+ Display+ Preferences+ Tools+ Help+ Utilities			
 Create a rotated Coord. a) Geometry: Create / Coord / Euler b) Select Rotation Parameters c) Set About Axis 1 d) Set rotation at 0° e) Click OK f) Set Origin to [0 0 -10] g) Click Apply. 	E box_drop.db - default_viewport - default_group - Group Z Y	RHS Window Geometry Rotation Parameters Action: Create ▼ Object: Coord ▼ Amethod: Euler ▼ Coord ID List 2 Type: Refer. Coord ID List 2 Type: Refer. Coord ID List 2 Refer. Coord ID List 2 Y Refer. Coord ID Rotation Parameters ✓ Auto Execute Origin [0 0 -10] f	Geometry Rotation Parameters First Rotation Axis: About Axis 1 Angle of Potation 0 Second Rotation Axis: About Axis 1 Angle of Rotation 0.0 Third Rotation Axis: About Axis 3 Angle of Rotation 0.0 Cancel
	KY MSC Software	24	MSC Software Simulating Reality, Delivering Certainty

Step 11.3 Loads/BCs: Create / Init Cond Euler

Step 11.4 Loads/BCs: Create / Init Cond Euler

Step 11.5 Loads/BCs: Create / Init Cond Euler

Step 11.6 Loads/BCs: Create / Init Cond Euler

lating Reality, Delivering Certainty

Step 12.1 Analysis: Analyze / Input Deck

Patran 2017

File* Group* Viewport* Viewing* Display* Preferences* Tools* Help* Utilities*

Set up analysis

- a) Analysis: Analyze / Input Deck / Translate
- b) Click on Translation Parameters.
- c) Select **Free** for Card Format.
- d) Click OK.

IS Wind	ow
Analys	is
Action	Analyze 🔻
Object	: Input Deck • a
Method	I: Translate 🔻
Code:	MSC.Dytran
Type:	Structural
Availat	le Jobs 📲
Job Na box_d	me rop
Job Na box_d Job De MSC.I May-1	me rop scription Dytran job created on 19- 7 at 23:12:24
Job Na box_d Job De MSC.I May-1	me rop scription Dytran job created on 19- 7 at 23:12:24
Job Na box_d Job De MSC.I May-1	me rop scription Dytran job created on 19- 7 at 23:12:24 anslation Parameters
Job Na box_d Job De MSC.(I May-1	me scription Dytran job created on 19- 7 at 23:12:24 anslation Parameters initiating Calculation Execution Controls
Job Na box_d Job De MSC.I May-1	me scription Dytran job created on 19- 7 at 23:12:24 anslation Parameters Initiating Calculation Execution Controls Select Load Cases
Job Na box_d Job De MSC.I May-1	me rop scription Dytran job created on 19- 7 at 23:12:24 anslation Parameters initiating Calculation Execution Controls Select Load Cases Output Requests
Job Na box_d Job De MSC.I May-1	me rop scription Dytran job created on 19- 7 at 23:12:24 anslation Parameters initiating Calculation Execution Controls Select Load Cases Output Requests Output Controls
Job Na box_d Job De MSC.I May-1	me rop scription Dytran job created on 19- 7 at 23:12:24 anslation Parameters initiating Calculation Execution Controls Select Load Cases Output Requests Output Requests Direct Text Input

-Bulk Data Format	<u> </u>
Card Format	Free • C
Min. Significant Digits	6 -
🖉 Separate Mesh File	
Include Data Files	
Select Case Co	ntrol Include Files
Select Bu	IK Data Files

a 🕜 Options - 🔿

Step 12.2 Analysis: Analyze / Input Deck

		Patran 2017			
Menu Hom	e Geometry Properties Loads/BCs Meshing Analysis Results		~	28324	a 🕜 Options 🔹 🔀
		9 6	Execution Controls	Execution Control Parameters	
Entire Current Model Group Analyze	Analysis Read Archive History State Deck File File File Archive Access Results Delete Actions Special	RHS Window	Execution Control Parameters	CPU Time	
N 🗋 🗋 🖼 🗠	0 % 🖗 🕸 🗊 📦 🖻 🖢 ~ 중 🕈 🐄 🖛 🛊 🍏 🗹 💷 🖾 🕸	Analysis	Element/Entity Activation	Integer Memory Size	
File+ Group+ Vi	ewport* Viewing* Display* Preferences* Tools* Help* Utilities*	Action: Analyze			
		Object: Input Deck * (2)	Dynamic Relaxation	Float Memory Size	
		Method: Translate *	Sub-Cycling Parameters	Time-Step Control	
			Eulerian Parameters	End Step	9999999 (d)
Defir	e execution control	Code: MSC.Dytran	ALE Parameters	End Time	0.1
para	meters	Type: Structural	General Parameters	Time-Step Size at Start	1e-7
a)	Analysis: Analyze /	Available Jobs	Inertial Loads	Minimum Time Step	
u)	Input Deck / Translate		Application Sensitive Defaults	Maximum Time Step	
			Default Gridpoint Constraints	Time-Step Scale Factor	f
D)	Click Execution		Gridpoint Offset	Lagr. Time Step Sc. Fact.	0.9
	Controls.	Job Name			
2	Click Execution	Job Description	Coupling Parameters	License Control	
C)	Click Execution	MSC.Dytran job created on 19- May-17 at 23:12:24	Contact Parameters		<u>, 199</u>
	Control Parameters.		Variable Activation	Mass Scaling	
d)	Enter 0.1 for End		Bulk Viscosity Parameters	Activate Mass Scaling	No -
,	Time	Translation Parameters	Hourglass Parameters	Min. Allowable Time Step	
		Initiating Calculation	nou glass rarameters	Max. Perc. of Mass Incr.	
e)	Enter 1.0e-7 for Time	Execution Controls b	User Subroutine Parameters	Steps for Freq. Checks	
,	Sten Size at Start	Output Requests	Rigid Body Merging		
		Output Controls	Add CID to MATRIC	(g)	
t)	Set Lag Time Step	Direct Text Input	Add CID to MATRIG	ок	Cancel
•	Scale Factor to 0 .9	[]	ОК	Ľ	
,		Apply			
g)	Click OK .		<u>}</u>		

Step 12.3 Analysis: Analyze / Input Deck

Patran 2017

Define execution control parameters

- a) Select Coupling Parameters
- b) Set Fast Coupling to **Active**
- c) Click **OK**
- d) Select Inertia Loads
- e) Set Gravity Scale Factor to **9.81**
- f) Set Gravity vector in Z = -1
- g) Click **OK**
- h) Click OK

n Controls	
Execution Control Parame	ters
Element/Entity Activation	n
Dynamic Relaxation.	
Sub-Cycling Parameter	s
Eulerian Parameters.	•
ALE Parameters	
General Parameters.	
Inertial Loads	(d
Application Sensitive Defa	ults
Default Gridpoint Constra	ints
Gridpoint Offset	
Coupling Parameters.	a
Contact Parameters.	
Variable Activation	5
Bulk Viscosity Paramete	rs
Hourglass Parameters	
User Subroutine Paramet	ers
Rigid Body Merging	
Add CID to MATRIG.	
ок	\mathbf{D}

🛆 🔞 Options 🔹 🗋

and the local division of the local division

e

9.81

Inertial Loads

Gravity Scale Factor

Global x-Direction Global y-Direction

Gravitation

Step 12.4 Analysis: Analyze / Input Deck

Creating output requests.

- a) Enter **arc_euler** for Result Name.
- b) Select **Archive** for File Type.
- c) Select **Element Output** for Result Type.
- d) Select Times for Output
- e) Enter **1e-3** for 0 THRU END BY (Time)
- f) Click Add.
- g) Select ALLMULTIEULHYDRO for Select Groups for Output.
- h) Select **Eulerian Solids** for Entity Type
- i) Select XVEL, YVEL, ZVEL, DENSITY, PRESSURE, FMAT, FMATPLT, VOID for Result Types.
- j) Click **Apply**.

P Output Requests	_ _ ×
Output Requests Request Summary	
a Result Name arc_euler File Type: Archive * Result Type: Element Output *	
Times for Output * Sampling Rate * 0 THRU END BY (Time) 1e-3 C	
Number of Savings per File	Delete
ОК	Cancel

Step 12.5 Analysis: Analyze / Input Deck

Creating output requests.

- a) Enter arc_structure for Result Name.
- b) Select Archive for File Type.
- c) Select Element Output for Result Type.
- d) Select Times for Output
- e) Enter 1e-3 for 0 THRU END BY (Time)
- f) Click Add.
- Select default_group for g) Select Groups for Output.
- h) Select **Dummy** for Entity Type
- Select user-specified for i) Result Types.
- Click Apply. i)

P Output Requests
Output Requests Request Summary
arc_euler
Result Name
Archive T
Result Type:
Element Output
Times for Output • d
Sampling Rate *
0 THRU END BY (Time)
1e-3 (e)
Number of Savings per File
Add f Modify Delete
OK

vare

Step 12.6 Analysis: Analyze / Input Deck

Creating output requests.

- a) Enter **ths_couple** for Result Name.
- b) Select **Time History** for File Type.
- c) Select **Coupling Surface Ths Output** for Result Type.
- d) Select Times for Output
- e) Enter **1e-5** for 0 THRU END BY (Time)
- f) Click **Add**.
- g) Select **couple** for Select Surfaces for Output.
- h) Select **all outputs** for Result Types.
- i) Click Apply.

Output Requests
- Output Requests
arc_euler arc_structure
Result Name
ths_couple a
File Type:
Time History • (b)
Result Type:
Coupling Surface Ths Output
Times for Output
0 THRU END BY (Time)
1e-5 (e)
Number of Savings per File 10000
Add Modify Delete
OK Cancel

Step 12.7 Analysis: Analyze / Input Deck

Creating output requests.

- a) Enter **ths_mat** for Result Name.
- b) Select **Time History** for File Type.
- c) Select Material Output for Result Type.
- d) Select Times for Output
- e) Enter **1e-5** for 0 THRU END BY (Time)
- f) Click **Add**.
- g) Select **all materials** for Select Materials for Output.
- h) Select **all outputs** for Result Types.
- i) Click **Apply**.
- j) Click **OK**.

P Output Requests
Output Requests Request Summary
arc_euler arc_structure ths_couple
Result Name
ths_mat a
Time History *
Result Type: Material Output T
Times for Output
0 THRU END BY (Time)
1e-5 (e)
Number of Savings per File 10000
Add Modify Delete
OK j Cancel

Analysis	Select Output	
Current Vi	ewport	
default_vi	ewport	
ilter Spec	ification	
*		
	Filter	
Select Mat	erials for Output	
air		
rigid water	(g)	-
	Select None	
	Builder Hone	
	Select All	
	Select Current	
esults Typ	bes	
YMOM - y- ZMOM - y- EKIN - kin EINT - inte EDIS - dis VOLUME -	component of mome component of mome etic energy arnal energy tortional energy volume	

Step 12.8 Analysis: Analyze / Input Deck

Add additional entries to modify and write out input deck.

- Select Direct Text Input. a)
- Select Bulk Data Section. b)
- Enter C)

```
HYDSTAT,888, #WATER MA
```

\$

FLOWDIR, 999, MMHYDRO, #

- , FLOW, BOTH +
- Click OK. a)
- Click Apply. b)

		Code	MSC.Dytran
ERIAL ID#,,,0,0,0,101350		Avai	lable Jobs
ESH ID#,POSZ,,,,,+			
		Job	Name
Direct Text Input		- - ×	rop
			scription
Bulk Data Section			Dytran job created on 19- 17 at 23:12:24
HYDSTAT,888,#WATER MATERIAL ID#,,,0,0,0,101350	\sim		
\$ FLOWDIR 999 MMHYDRO #MESH ID# POSZ +	(c)		
+ ,FLOW,BOTH	\smile		ranslation Parameters
			Initiating Calculation
			Execution Controls
			Select Load Cases
			Output Requests
			Output Controls
			Direct Text Input
			a a a a a a a a a a a a a a a a a a a
C File Management Section	M EMS Write To Input Dook		Analy
Executive Control Section	EXEC Write To Input Deck		
Case Control Section	CASE Write To Input Deck		
Bulk Data Section	RULK Write To Input Deck		
	BOLK WITE TO INPUT DECK		
ок (d) Clear	Reset	Cancel	
		WSU	Software
33			Simulating Reality, Delivering Certainty

RHS Window Analysis

Action:

Object:

Analyze -Input Deck '

Method: Translate

Step 13 Analysis: Input Deck Edit

Edit Input deck with special features.

- a) Add additional output breakdown per material.
- b) Fix HYDSTAT to water material ID.
- c) Fix FLOWDIR to MESH ID.

d) Save.

```
$ Output result for request: arc euler
TYPE (arc euler) = ARCHIVE
ELEMENTS (arc euler) = 1
                                                                                 a
SET 1 = ALLMULTIEULHYDRO
ELOUT (arc euler) = XVEL YVEL ZVEL DENSITY PRESSURE VOID FMAT FMATPLT FMATPLT2,
 FMATPLT3 DENSITY2
TIMES (arc euler) = 0 THRU END BY 1e-3
SAVE (arc euler) = 10000
. . . .
HYDSTAT, 888, 3, , , 0, 0, 0, 101350 (b)
$
FLOWDIR, 999, MMHYDRO, <u>6</u>, POSZ, , , , , + (c)
        ,FLOW,BOTH
+
. . . .
---- Material air id =2
DMAT,2,1.14,2
EOSGAM, 2, 1.4, 287,,
$
$ ----- Material water id =3
DMAT, 3, 1000, 3
EOSPOL, 3, 2.2e+009
$ ----- Mesh Box: mesh
MESH, 6, BOX, , , , , , +
       ,-1,-1,-2,3,3,3.5,,,+
+
      ,31,31,36,,,,EULER,2
+
```


SECTION 5 INTERRUPT

Dytran FSI Process

Step 14. Dytran Analysis on Linux

Create alias to Dytran run script: \$ alias dytran=/msc/Dytran/2017/bin/Dytran

To run:

\$ dytran jid=jobname [options]

Execute this workshop:

\$ dytran jid=2_w01 nproc=4 ncpus=1 dmp=both intelmpi=yes

Step 14. Dytran Analysis on Windows

Execute Dytran

- a) Select **DytranDMP** execulable and set to **2** cores
- b) Select 2_w01.dat file.
- c) Click "**Play**" icon.
- After analysis, make sure
 ARC and
 THS files
 were created
 in output
 window.

Dytran Explorer	
le Tools Help Window	
4 🖄 🖾 🔀	
Dytran Job [1]	
Dytran Explorer	
File Explorer	Input Files
Name	2_w01.bdf (h)
⊳ 🎴 w02	2_w01.dat
⊳ 🍌 w03	
⊳ <u>w</u> 04	
▶ wus ▶ w12	
▷ 退 w13	
⊳ 🎍 w15	Output Files
⊳ w 16	
> w17	2 W01.001
⊳ 📙 w20	2_W01_FILE_SUMMARY.MSG
⊳ 🎍 w21	2_W01_NASTRAN_IGNORE.MSG
▷ ₩01-2	2 W01_THS_COUPLE_0.THS CU
V Workshops P	
4 III >>	VTU/PVD
Executables Job Info	
Dytrap No CPUs Elapsed time : 1	00:02:21
	C:\MSC.Software\Dytran\2017\\dytranexe\dytrandmp.
anput File :	2_w01.dat
User modified User routines :	
	100%
53:07 Fri May 19 2017	ware

SECTION 6 INTERRUPT

Dytran FSI Results Processing

Step 15. Dytran Time History

Viewing time histories are possible directly by Dytran Explorer

- a) Double Click the **COUPLE.THS** file shown in the Output files window.
- b) Select **all results** for the Y-axis

	Dytran Explorer		
	File Tools Help Window		
	🛱 🖄 🖾 🔀		
	Dytran Job [1]		
	Dytran Explorer		
	File Explorer	Input Files	
	Name	▲ 2_w01.bdf	
Dytran Explorer		2_w01.dat	
File Tools Help Window			
🛱 🖄 🖾 🔀			
Visual Time History Viewer			
		Output Files	
		2 W01 OUT	
X: 0.0397219 Y: 96513.2		2_W01_ERROR_SUMMARY.MSG	
2_W01_THS_COU	JPLE_0.THS	2_W01_FILE_SUMMARY.MSG 2_W01_NASTRAN_IGNORE.MSG	a MSG
RFORCE vs. TIME W XFORCE vs. TIME	FORCE vs. TIME ZFORCE vs. TIME	2_W01_THS_COUPLE_0.THS	THS
5.3e+04		2_W01_THS_MAT_0.THS	ARC/RST
4.3e+04			VTU/PVD
8.4e+04			
8 2.4e+04	Ala .		Î
1.4e+04	With Martin Martin and	p2:21	
4.1e+03		4SC.Software\Dytran\2017\\dytrane	ce\dytrandmp.
-1.6e+04	the MMA . Make address on the second	/01.dat	
0 0.0091 0.018 0.027 0.036 0.04	IS 0.055 0.064 0.073 0.082 0.091 0. TIME	.1	
1			100%
THS FIle	xis values manually X-min 0		
X-avis TIME Style	Hines X-max U.1		
	node Y-max 6.307e+04		
Y-axis ZFORCE Clear	r Close Reset Pl	ot	
08:53:07 Fri May 19 2017			Coffusoro

Step 16. Convert Dytran Result Files

ARC to VTK Converter

- Bundled with Dytran
 - Dytran_installation_dir\bin\exe\arc2vtk.exe
 - Usage:

```
C:\MSC.Software\Dytran\2017\bin\exe\arc2vtk.exe [-ascii] [-vtk] [-nonauto] <archive-file.ARC>
C:\MSC.Software\Dytran\2017\bin\exe\arc2vtk.exe [-ascii] <intfor-file.intfor>
C:\MSC.Software\Dytran\2017\bin\exe\arc2vtk.exe <vtu-file.VTU>
C:\MSC.Software\Dytran\2017\bin\exe\arc2vtk.exe <timehistory-file.THS>
```

Includes THS to CSV Converter

- Easiest method to convert THS data to CSV Format for spreadsheet use
- Converts ARC files to open source VTU format to use with Paraview

Step 17.1 Process Results in Paraview

Open Paraview

- a) File Open and select converted PVD file
- b) Click Apply to process result

🌠 Open File: (open multiple files with <ctrl> key.)

? ×

Simulating Reality, Delivering Certainty

Step 17.2 Process Results in Paraview

		Extract Generic Dataset Surface
	6	Extract Level
		Extract Location
		Extract Region Surface
		Extract Selection
	۲	Extract Subset
		Extract Surface
		Extract Time Steps
		FFT Of Selection Over Time
		Feature Edges
		Force Time
		Gaussian Resampling
		Generate Ids
		Generate Quadrature Points
		Generate Quadrature Scheme Dictio
		Generate Surface Normals
	0	Glyph
h)		Glyph With Custom Source
		Gradiant

Average node results from element central values

- a) Select euler result object
- b) Select Cell Data to Point Data filter
- c) Click Apply

AMR Connectivity

AMR Contour

AMR CutPlane

AMR Dual Clip

Add Field Arrays

AMR Fragment Integration

AMR Fragments Filter

Angular Periodic Filter

Annotate Global Data

Annotate Time Filter

Append Attributes

Append Datasets

Append Geometry

Cell Data to Point Data

Block Scalars

Calculator

Clean

Cell Centers

Annotate Attribute Data

Step 17.3 Process Results in Paraview

C

3 0

0.5

▼ Magnitude

🖴 🛋 😫 💽

1.1

Display (UnstructuredGridRe Display)

Surface

Edit

Minimum

Maximum

Coloring ◆ VEL

Representation

Connectivity		Extract Component
Contour		Extract Edges
CutPlane		Extract Generic Dataset Surf
Dual Clip	6	Extract Level
Fragment Integration		Extract Location
Fragments Filter		Extract Region Surface
Field Arrays		Extract Selection
egate Dataset	9	Extract Subset
ular Periodic Filter		Extract Surface
otate Attribute Data		Extract Time Steps
otate Global Data		FFT Of Selection Over Time
otate Time Filter		Feature Edges
end Attributes		Force Time
end Datasets		Gaussian Resampling
end Geometry		Generate Ids
end Reduce		Generate Quadrature Point
k Scalars		Generate Quadrature Scher
ulator		Generate Surface Normals
Centers	0	Glyph
Data to Point Data		Glyph With Custom Source
n		Gradient
n Cells to Grid		Gradient Of Unstructured D
n to Grid		Grid Connectivity
	0	Group Datasets
Closed Surface		Group Time Steps
Generic Dataset	4	Histogram
pute Derivatives		Image Data To AMR
pute Quartiles		Image Data to Point Set
nectivity		Integrate Variables
ingency Statistics		Interpolate to Quadrature P
our		Intersect Fragments
our Generic Dataset		Iso Volume
vert AMR dataset to Multi-block		K Means

Extract Component	Outline Curvilinear DataSet	
Extract Edges	ParticlePath	
Extract Generic Dataset Surface	ParticleTracer	
Extract Level		Pass Arrays
Extract Location		Plot Data
Extract Region Surface		Plot Global Variables Over Time
Extract Selection		Plot On Intersection Curves
Extract Subset		Plot On Sorted Lines
Extract Surface	-	Plot Over Line
Extract Time Steps	OH	Plot Selection Over Time
FFT Of Selection Over Time		Point Data to Cell Data
Feature Edges		Point Line Interpolator
Force Time		Point Plane Interpolator
Gaussian Resampling	Point Volume Interpolator	
Generate Ids		Principal Component Analysis
Generate Quadrature Points	*	Probe Location
Generate Quadrature Scheme Dictionary		Process Id Scalars
Generate Surface Normals	{}	Programmable Filter
Glyph	Python Annotation	
Glyph With Custom Source	Python Calculator	
Gradient	Quadric Clustering	
Gradient Of Unstructured DataSet		Random Attributes
Grid Connectivity	Random Vectors	
Group Datasets	Rectilinear Data to Point Set	
Group Time Steps	Rectilinear Grid Connectivity	
Histogram	Reflect	
Image Data To AMR	Resample AMR	
Image Data to Point Set	Resample To Image	
Integrate Variables	Resample With Dataset	
Interpolate to Quadrature Points	Ribbon	
Intersect Fragments	Rotational Extrusion	
Iso Volume	Ruler	
K Means	SPH Line Internolator	

Surface Flow

Surface Vectors

Table To Points

Temporal Cache

Synchronize Time

Table To Structured Grid

Temporal Interpolator

Temporal Shift Scale

Temporal Statistics

Tensor Glyph

Tetrahedralize

Texture Map to Cylinder

Texture Map to Plane

Texture Map to Sphere Threshold

Time Step Progress Bar

Tessellate

Transform

Tube

Temporal Particles To Pathlines

Temporal Snap-to-Time-Step

Create Isovolume for water

- Select cellDataToPointData result object a)
- Select Isovolume filter b)
- Set Input Scalar to FMATPLT3 and C) range between 0.5 and 1.1
- Click Apply d)
- **Change Fringe** e)

