WORKSHOP 10

Thermal Stress Analysis of a Bi-Metallic Plate

Model Description:

In this example we will perform the thermal stress analysis of a bimetallic strip. We will build the entire model from geometric construction so that we can apply loads directly on the geometry. The dimension of the bi-metallic strip is one inch by one inch. The thickness for the solder type material is 0.05 inch, and the thickness of the Ge material is 0.025 inch. Thus the assembly thickness is 0.075 inch.

The top surface temperature boundary condition is -30° C, and the bottom surface temperature boundary condition is 70° C. We will determine the temperature distribution by running a steady-state thermal analysis.

Prior to the development of the MSC.Patran MSC.Nastran Heat Transfer interface, one would request:

TEMP(PUNCH)=all

in the MSC.Nastran Case Control section of the thermal run. The temperature load is then created and saved inside the punch file. In the subsequent thermal stress analysis one can access this file by defining

TEMP(LOAD)=1

in the Case Control section of the ensuing stress analysis run.

However, using MSC.Patran you can use the **Create-Spatial-FEM** command after you have postprocessed the thermal result in the viewport. We will use this technique to apply a thermal load for the stress analysis. Also, we will analyze the thermal stress analysis for the free-free expansion by enforcing a minimum number of constraints to fix-rigid body motion.

Suggested Exercise Steps:

- Create a new database called **ex10.db**
- Create a geometry representing a bi-metallic strip.
- Mesh the solid using Uniform Mesh Seed for solid 1 and Mesh using HEX8 for both solids.
- Merge all coincident nodes using Equivalence action in the Finite Elements menu
- Specify thermal material properties.
- Define properties using 3D solid for each individual parts.
- Apply temperature boundary conditions to the solid.
- Analyze, perform, and read the results.
- Define a spatial FEM Field based on the temperature Profile.
- Define the new material properties using structural analysis.
- Apply different loads and boundary conditions for the solid
- Perform the structural analysis and read the results.

Exercise Procedure:

1. Open a new database. Name it **ex10.db**

File/New...

New Database Name:

OK

The viewport (PATRAN's graphics window) will appear along with a *New Model Preference* form. The *New Model Preference* sets all the code specific forms and options inside MSC.PATRAN.

In the *New Model Preference* form set the *Analysis Code* to **MSC.Nastran**

Tolerance:

Analysis Code:

Analysis Type:

♦ Based on Model

MSC/NASTRAN

Thermal

ОК

2. Create the Model.

Action:

Object:

Method:

Vector Coordinates List:

Origin Coordinates List:

♦ Geometry

Apply

♦ Geometry

Action:

Object:

Method:

Translation Vector:

Create	
Solid	
Extrude	
<0 0 0.05>	
	_

Auto Execute

Surface List:

Apply

Click on the Solid Face icon.

Translation Vector:

<0 0 0.025>	
Solid 1.6	

Apply

Surface List:

Your model should look like the following figure.

ľ.	ļ		

3. Mesh the Solids.

♦ Finite Elements	
Action:	Create
Object:	Mesh Seed
Type:	Uniform

2

Number:

4

Click on the four corners of Solid 1. Hold shift key down while you click.

Curve List:

Solid 1.1.1 1.2.1 1.2.3 1.1.3

Apply

Number:

Click on the four corners of Solid 2. Hold shift key down while you click.

Curve List:

Solid 2.1.1 2.2.1 2.2.3 2.1.3	
-------------------------------	--

Apply

♦ Finite Elements

Action:

Object:

Type:

Global Edge Length:

Element Topology:

Solid List:

Create	
Mesh	
Solid	
0.1	
Hex8	
Solid 1 2	

Apply

4. Remove Coincident Nodes.

♦ Finite Elements

Action:

Object:

Type:

Equivalencing Tolerance:

Apply

Equivalence
All
Tolerance Cube
0.005

5. Specify Thermal Material Properties.

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties...

Constitutive Model:

Thermal Conductivity:

Material Name:

Input Properties...

Constitutive Model:

Thermal Conductivity:

Apply

Create	
Isotropic	
Manual Input	
Ge	

Solid properties	
1.524	

Solder

Solid properties	
1.27	

Cancel

6. Define Element Properties.

◆ Properties

Action:

Object:

Type:

Create 3D Solid Ge

m:Ge

Solid 2

Property Set Name:

Input Properties...

Material Name:

OK

Click on the **Bottom View** icon.

Select Members:

Apply

Property Set Name:

Input Properties...

Material Name:

Select Members:

Add	
Apply	

7. Apply temperature boundary conditions.

♦ Load/BCs

Action:

Solder

m:Solder

Solid 1

Object:	Temp(Thermal)
Type:	Nodal
Analysis Type:	Thermal
New Set Name:	temp_bottom
Input Data	
Boundary Temperature:	70
ОК	
Select Application Region	
Geometry Filter:	◆ Geometry
Click on the Surface or Face icon.	
Surface o	or Face
Select Geometry Entities:	Surface 1
Add	
OK	
Apply	
N. C. N	4
New Set Name:	temp_top
Input Data	20
Boundary Temperature:	-30
UK Select Amplication Degion	
Select Application Region	
Geometry Fuller:	▼ Geometry
Select Geometry Entities:	50110 2.0
Aud	
Арріу	

8. Perform the Thermal Analysis.

An MSC.Nastran input file called **ex10.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green.

Submitting the Input File for Analysis:

- 9. Submit the input file to MSC.Nastran for analysis.
 - 9a. To submit the MSC.Patran .bdf file, find an available UNIX shell window. At the command prompt enter **nastran** ex10.bdf scr=yes. Monitor the run using the UNIX ps command.
 - 9b. To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter nastran ex10 scr=yes. Monitor the run using the UNIX ps command.
- 10. When the run is completed, edit the **ex10.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

- 11. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.
- 12. Proceed with the Reverse Translation process, that is, attaching the **ex10.xdb** results file into MSC.Patran. To do this, return to the **Analysis** form and proceed as follows:

Action:

Object:

Method:

Select Results File

Select Results File

OK	
Apply	

13. Display the Results.

Form Type:

Select Results Cases: Attach XDB Result Entities

Local

ex10.xdb

Default, PW Linear: 100. % of Load Temperatures

Click on the Iso 1 View icon to change the view.

Apply

14. Define a Spatial FEM Field based on the Temperature Profile.

♦ Fields	
Action:	Create
Object:	Spatial
Method:	FEM
Field Name:	t_load
FEM Field Definition:	◆ Continuous
Field Type:	♦ Scalar
Mesh/Results Group Filter:	Current Viewport
Select Group:	default_group
Apply	

15. Change the Analysis type to Structural.

Preferences/Analysis...

Analysis Type:

Structural

OK

16. Specify Structural Material Properties.

♦ Materials

Action:

Object:

Method:

Material Name:

Input Properties...

Constitutive Model:

Elastic Modulus:

Poisson Ratio:

Thermal Expan. Coeff:

Reference Temperature:

Apply	
Cancel	

Material Name:

Input Properties...

Constitutive Model:

Elastic Modulus:

Shear Modulus:

Thermal Expan. Coeff:

Reference Temperature:

Apply	
Cancel	

17. Assign Element Properties.

◆ Properties

Action:

Object:

Create
Isotropic
Manual Input
Solder_st

Linear Elastic	
1.3e7	
0.4	
2.47e-5	
-30.0	

Ge_st

Linear Elastic
1.885e7
0.933e7
5.8e-6
-30.0

Create	
3D	

Type:	Solid
Property Set Name:	Ge_st
Options:	Standard Formulation
Input Properties	
Material Name:	m:Ge_st
ОК	
Select Members:	Solid 2
Add	
Apply	

When asked, "Solid 2 already has been associated to an element property region. Overwrite the association?", answer Yes.

Yes	
Property Set Name:	Solder_st
Options:	Standard
Input Properties	roimulation
Material Name:	m:Solder_st
OK	
Select Members:	Solid 1
Add	
Apply	

When asked, "Solid 1 already has been associated to an element property region. Overwrite the association?", answer Yes.

Yes	

18. Create a New Load Case.

◆ Load Cases

Action:

Create

Load Case Name:

Load Case Type:

Apply

struct_load	
Static	

19. Define a Temperature Load.

♦ Load/BCs

Action:

Object:

Type:

Analysis Type:

Current Load Case:

New Set Name:

Input Data...

Load/BC Set Scale Factor:

Temperature:

Temperature
Nodal
Structural
struct_load
temp_load

Create

1.0	
f:t_load	

OK

Select Application Region...

Geometry Filter:

♦ Geometry

Click on the Solid icon.

Select Geometry Entities:

Solid 1 2

Add	
OK	
Apply	

20. Apply constraints on the four corner points of the top surface.

♦ Load/BCs

A	
Action:	Create
Object:	Displacement
Type:	Nodal
Analysis Type:	Structural
New Set Name:	fix_x
Input Data	
Load/BC Set Scale Factor:	1.0
Translations <t1 t2="" t3=""></t1>	<0., ,>
OK	
Select Application Region	
Geometry Filter:	◆ Geometry
Click on the Point icon.	
• Point	
Select Geometry Entities:	Point 9 10
Select Geometry Entities: Add	Point 9 10
Select Geometry Entities: Add OK	Point 9 10
Select Geometry Entities: Add OK Apply	Point 9 10
Select Geometry Entities: Add OK Apply New Set Name:	Point 9 10 fix_y
Select Geometry Entities: Add OK Apply New Set Name: Input Data	Point 9 10 fix_y
Select Geometry Entities: Add OK Apply New Set Name: Input Data Load/BC Set Scale Factor:	Point 9 10 fix_y 1.0
Select Geometry Entities: Add OK Apply New Set Name: Input Data Load/BC Set Scale Factor: Translations <t1 t2="" t3=""></t1>	Point 9 10 fix_y 1.0 < , 0., >
Select Geometry Entities: Add OK Apply New Set Name: Input Data Load/BC Set Scale Factor: Translations <t1 t2="" t3=""> OK</t1>	Point 9 10 fix_y 1.0 <, 0., >
Select Geometry Entities: Add OK Apply New Set Name: Input Data Load/BC Set Scale Factor: Translations <t1 t2="" t3=""> OK Select Application Region</t1>	Point 9 10 fix_y 1.0 <,0.,>
Select Geometry Entities: Add OK Apply New Set Name: Input Data Load/BC Set Scale Factor: Translations <t1 t2="" t3=""> OK Select Application Region Geometry Filter:</t1>	Point 9 10 fix_y 1.0 <,0.,>
Select Geometry Entities: Add OK Apply New Set Name: Input Data Load/BC Set Scale Factor: Translations <t1 t2="" t3=""> OK Select Application Region Geometry Filter: Select Geometry Entities:</t1>	Point 9 10 fix_y 1.0 <, 0., > ◆ Geometry Point 11
Select Geometry Entities: Add OK Apply New Set Name: Input Data Load/BC Set Scale Factor: Translations <t1 t2="" t3=""> OK Select Application Region Geometry Filter: Select Geometry Entities:</t1>	Point 9 10 fix_y 1.0 <, 0., > ♦ Geometry Point 11

Apply	
New Set Name:	fix_z
Input Data	
Load/BC Set Scale Factor:	1.0
Translations <t1 t2="" t3=""></t1>	<,, 0. >
ОК	
Select Application Region	
Geometry Filter:	♦ Geometry
Select Geometry Entities:	Point 9:12
Add	
OK	

Your model should look like the following figure.

21. Perform the Structural Analysis.

♦ Analysis

Action:

Object:

Method:

Job Name:

Subcase Select...

Subcases For Solution Sequence:101

Subcases Selected:

OK	
Apply	

Analyze
Entire Model
Analysis Deck
ex10_st

struct_load

default

Submitting the Input File for Analysis:

22. Submit the input file to MSC.NASTRAN for analysis.

To submit the MSC.PATRAN .bdf file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran** ex10_st.bdf scr=yes. Monitor the run using the UNIX ps command.

- 23. When the run is completed, edit the ex10_st.f06 file and search for the word FATAL. If no matches exist, search for the word WARNING. Determine whether existing WARNING messages indicate modeling errors.
- 24. Read in the Analysis Results.

♦ Analysis
Action:
Object:
Method:
Job Name:
Select Results File
ex10_st.op2
ОК
Apply

25. Display the Results.

♦ Results

Select Results Cases:

Select Fringe Result:

Result Quantity:

Select Deformation Result:

Apply

struct_load, Static Subcase

Stress Tensor

von Mises

Displacements, Translational

Read Output2

Result Entities

Translate

ex10_st

The reference or zero stress state for the assembly is initialized at -30 °C. The thermal coefficient of expansion for the solder is approximately four times that of Ge. When the temperature gradient associated with the temperature boundary conditions is applied, the solder layer wants to grow significantly more than the Ge layer due not only to the higher coefficient of thermal expansion, but also because of the higher temperature relative to TREF. The Ge layer ends up with a more complex stress pattern due to its four corner points being constrained, the distribution of temperature through the layer, and the growth enforced by the solder layer. The free surface of the solder layer exhibits the low stress levels.

Quit MSC.Patran when you have completed this exercise