

815 Colorado Boulevard Tel: (323) 258-9111

United States MSC.Patran Support Tel: 1-800-732-7284 Fax: 714-9792990 **Tokyo, Japan** Tel: 81-3-3505-0266 Fax: 81-3-3505-0914

Los Angeles, California 90041-1777 Fax: (323) 259-3838

> Munich, Germany Tel: (+49)-89-43 19 87 0 Fax: (+49)-89-43 61 716

MSC.Nastran Dynamic Analysis

NAS102 EXERCISE WORKBOOK

MSC.Nastran Version 70.7 MSC.Patran Version 9.0

NA*70.7*Z*Z*SM-NAS102-WBK

November 1999

PROPRIETARY NOTICE

The MSC.Software Corporation reserves the right to make changes in specifications and other information contained in this document without prior notice.

Although due care has been taken to present accurate information, THE MSC.SOFTWARE CORPORATION DISCLAIMS ALL WARRANTIES WITH RESPECT TO THE CONTENTS OF THIS DOCUMENT (INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE) EITHER EXPRESSED OR IMPLIED. THE MSC.SOFTWARE CORPORATION SHALL NOT BE LIABLE FOR DAMAGES RESULTING FROM ANY ERROR CONTAINED HEREIN, INCLUDING, BUT NOT LIMITED TO, FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF, OR IN CONNECTION WITH, THE USE OF THIS DOCUMENT.

MSC.Patran is a registered trademark of The MSC.Software Corporation.

MSC and MSC. are registered trademarks and service marks of The MSC.Software Corporation.

ABAQUS is a registered trademark of Hibbitt, Karlsson, & Sorensen, Inc.

ANSYS is a registered trademark of ANSYS, Inc.

CADDS 5 and Computervision are trademarks of Computervision R&D Inc., a subsidiary of Prime Computer, Inc.

CATIA is a registered trademark of Dassault Systemes.

EUCLID is a registered trademark of Matra Datavision, S.A.

IGES is an acronym for the "Initial Graphics Exchange Specification", published by the U.S. Department of Commerce, National Institute of Standards and Technology.

MARC is a registered trademark of MARC Analysis Research Corporation.

Motif is a trademark of the Open Software Foundation, Inc.

MSC.Nastran is an enhanced proprietary version developed, maintained, supported and marketed by The MSC.Software Corporation.

NASTRAN is a registered trademark of the National Aeronautics and Space Administration.

Pro/ENGINEER is a trademark of Parametric Technology Corporation.

Unigraphics is a registered trademark of EDS Unigraphics Division.

UNIX is a trademark of AT&T Bell Laboratories.

X Window System is a trademark of the Massachusetts Institute of Technology.

Training Documentation: Copyright © 1999 The MSC.Software Corporation. All Rights Reserved.

This notice shall be marked on any reproduction of this documentation, in whole or in part. Any reproduction or distribution of this document, in whole or in part, without the prior written consent of The MSC.Software Corporation is prohibited.

If you would like to order more copies of this document, please contact MSC.Software Contracts Processing at (800) 400-4672. U.S.A. orders: All orders must be accompanied by a check or purchase order. Your order will be sent prepaid via UPS or fourth class mail and the shipping charges will be added to the invoice. F.O.B. will be the shipping point. Terms are net amount due within 30 days. Outside U.S.A. orders: Please contact your local MSC.Software office for a quotation.

DISCLAIMER

The concepts, methods, and examples presented in this text are for educational purposes only and are not intended to be exhaustive or to apply to any particular engineering problem or design. The MSC.Software Corporation assumes no liability or responsibility to any person or company for direct or indirect damages resulting from the use of any information contained herein.

Printed in U.S.A. ©1999 by MSC.Software Corporation All rights reserved.

TABLE OF CONTENTS

<u>Lesson</u>	<u>Title</u>
1.	Modal Analysis of a Flat Plate
2.	Modal Analysis of a Flat Plate using Static Reduction
3.	Direct Transient Response Analysis
4.	Modal Transient Response Analysis
5.	Direct Frequency Response Analysis
6.	Modal Frequency Response Analysis
7.	Direct Transient Response with Base Excitation
8.	Enforced Motion with Direct Frequency Response
9a.	Response Spectra
9b.	Response Spectra (cont.)
10.	Random Analysis
11.	Random Analysis

- 12. Complex Modes of a Pile Driver
- 13. Nolins in Linear Transient
- 14a. Modal Analysis of a Beam
- 14b. Normal Modes with Differential Stiffness
- 15. Weight Minimization of a Three Bar Truss

<u>Appendix</u> <u>Title</u>

- 1-a. Modal Analysis of a Beam (SI Units)
- 1-b. Normal Modes with Differential Stiffness (SI Units)
- 1-c. Normal Modes with Differential Stiffness, Using STATSUB

i-2 MSC/NASTRAN 102 Exercise Workbook

WORKSHOP 1

Modal Analysis of a Flat Plate

Objectives

- Produce a MSC.Nastran input file.
- Submit the file for analysis in MSC.Nastran.
- Find the first five natural frequencies and mode shapes of the flat plate.

MSC.Nastran 102 Exercise Workbook

Model Description:

WORKSHOP 1

Y

z

Х

For this example, use Lanczos method to find the first five natural frequencies and mode shapes of a flat rectangular plate. One of the edges is fixed, (See Figure 1.2.). Below is a finite element representation of the rectangular plate. It also contains the geometric dimensions and the loads and boundary constraints. Table 1.1 contains the necessary parameters to construct the input file.

45		46		47		48		49		50		51		52		53		54		55	
	31		32		33		34		35		36		37		38		39		40		
34		35		36		37		38		39		40		41		42		43		44	
	21		22		23		24		25		26		27		28		29		30		
23		24		25		26		27		28		29		30		31		32		33	b
	11		12		13		14		15		16		17		18		19		20		
12		13		14		15		16		17		18		19		20		21		22	
	1		2		3		4		5		6		7		8		9		10		
1		2		3		4		5		6		7		8		9		10		_11	

Figure 1.1-Grid Coordinates and Element Connectivities

a

Table 1.1Length (a)5 inHeight (b)2 inThickness0.100 inWeight Density0.282 lbs/in³Mass/Weight Factor2.59E-3 sec²/inElastic Modulus30.0E6 lbs/in²Poisson's Ratio0.3

Natural Frequency: Hertz

WORKSHOP 1

$$f_{ij} = \frac{\lambda_{ij}^{2}}{2\pi a^{2}} \left[\frac{Eh^{3}}{12\gamma(1-v^{2})}\right]^{1/2}$$

where i= 1,2,3, ...

j= 1,2,3, ...

Description: Clamped-Free-Free

a = length of plate

b = width of plate

h = thickness of plate

i = number of half-waves in mode shape along horizontal axis

j = number of half-waves in mode shape along vertical axis

C = clamped edge

E = modulus of elasticity

F = free edge

S = simply supported edge

 γ = mass per unit area of plate (μ h for a plate material with density μ)

v = Poisson ratio

 λ_{ij}^{2} and (ij)

		Мо	ode Sequence			
a/b	1	2	3	4	5	6
0.40	3.511	4.786	8.115	13.88	21.64	23.73
	(11)	(12)	(13)	(14)	(21)	(22)
2/3	3.502	6.406	14.54	22.04	26.07	31.62
	(11)	(12)	(13)	(21)	(22)	(14)
1.0	3.492	8.525	21.43	27.33	31.11	54.44
	(11)	(12)	(21)	(13)	(22)	(23)
1.5	3.477	11.68	21.62	39.49	53.88	61.99
	(11)	(12)	(21)	(22)	(13)	(31)
2.5	3.456	17.99	21.56	57.46	60.58	106.5
	(11)	(12)	(21)	(22)	(31)	(32)

 $\nu = 0.3$

Suggested Exercise Steps

- Explicitly generate a finite element representation of the plate structure. (i.e., The grids (GRID) and element connectivities (CQUAD4) should be defined manually.)
- Define material (MAT1) and element (PSHELL) properties.
- Apply the fixed boundary constraints (SPC1).
- Prepare the model for a normal modes analysis (SOL 103 and PARAMs).
 - PARAM, WTMASS, 0.00259
 - PARAM, COUPMASS, 1
- Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis.
- Review the results, specifically the eigenvalues.

ID SEMINAR, PROB1

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	б	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 11, otherwise, proceed to step 2.
- 2. Create a new database named prob1.db.

File/New

New Database Name

prob1

OK

In the New Model Preferences form, set the following:

Tolerance

Analysis Code:

◆ Default

MSC/NASTRAN

OK

3. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

4. Create a surface.

♦ Geometry

Action:

Object:

Method

Vector Coordinates List

Origin Coordinates List

Apply

Create	
Surface	
XYZ	
<5, 2, 0>	
[0, 0, 0]	

Figure 1.3-The surface should resemble the output below.

5. Create the finite element model and mesh the surface.

5a. Change the number of mesh seeds to 4 and select the right edge.

Number =

Curve List (see Figure 1.3)

4	
Surface 1.3	1

MSC.Nastran 102 Exercise Workbook

Apply

WORKSHOP 1

5b. Mesh the surface.

Object:

Type:

Surface List

Create	
Mesh	
Surface	
Surface 1	

Apply

Figure 1.4-The model should appear as below.

15		46		47		48		49		<i>Ş</i> 0		<i>Ş</i> 1		<i>Ş</i> 2		<i>5</i> 3		<i>5</i> 4		-\$
	31		32		33		34		35		36		37		38		39		40	
4		35		36		37		38		39		40		41		42		43		-
	21		22		23		24		25		26		27		28		29		30	
3		24		25		26		27		28		29		30		31		32		-
	11		12		13		14		15		16		17		18		19		20	
2		13		14		15		16		17		18		19		20		21		-é
	1		2		3		4		5		6		7		8		9		10	
		2		3		4		5		6		7		8		9		10		_

6. Create a set of material properties for the plate.

♦ Materials

Action:

e

00,000

Method:

Material Name

Input Properties...

Elastic Modulus =

Poisson Ratio =

Density =

OK

Apply

7. Define the plate thickness.

♦ Properties

Action:

Dimension:

Type:

Property Set Name

Input Properties...

Material Name (Select from Material Property Sets box.)

Thickness

OK

Select Members

Add
Apply

- 8. Apply constraints to the model.
- 8a. Constrain the left edge from moving through all degrees of freedom.

♦ Load/BC's

Action:

Create

MSC.Nastran 102 Exercise Workbook

Isotropic

Manual Input

mat_1

30.0E6	
.3	
.282	

Create	
2D	
Shell	
plate	

m:mat_1

0.100

Surface 1

1-14

Object:

Type:

New Set Name

Input Data...

Translations <T1 T2 T3>

Rotations <R1 R2 R3>

Analysis Coordinate Frame

OK

Select Application Region...

Displacement Nodal

fixed

<0, 0, 0>	
<0, 0, >	
Coord 0	

Select the curve or edge icon.

Curve or edge

Select Geometry Entities (see Figure 1.5)

Surface 1.1

9. Run the analysis.

Before the complete input deck is generated for this analysis, a file that contains only the model data needs to be created. This file is to be used in later workshops.

♦ Analysis

Action:	Analyze
Object:	Entire Model
Method	Model Only
Job Name	plate
Apply	

10. Now, you will generate the input file for analysis.

♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method	Analysis Deck

1-16 MSC.Nastran 102 Exercise Workbook

Job Name	prob1
Translation Parameters	
Data Output:	XDB and Print
ОК	
Solution Type	
Solution Type:	♦ NORMAL MODES
Solution Parameters	
Mass Calculation:	Coupled
Data Deck Echo:	Unsorted
WtMass Conversion =	.00259
ОК	
ОК	
Subcase Create	
Available Subcases	Default
Subcase Parameters	
Number of Desired Roots =	5
ОК	
Output Requests	

Under Output Requests, highlight:

SPCFORCES(SORT1,Real)=All FEM

Delete OK Apply Cancel Apply An MSC.Nastran input file called **prob1.bdf** will be generated. The process of translating your model into an input file is called Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 12.

WORKSHOP 1

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from Table 1.1. The result should be similar to the output below.

11. MSC.Nastran Input File: prob1.dat

```
ID SEMINAR, PROB1
SOL 103
TIME 600
CEND
TITLE = NORMAL MODES EXAMPLE
ECHO = UNSORTED
SUBCASE 1
   SUBTITLE= USING LANCZOS
   METHOD = 1
   SPC = 1
   VECTOR=ALL
BEGIN BULK
PARAM
      COUPMASS 1
PARAM
         WTMASS .00259
EIGRL
         1
                                   5
PSHELL
                 1
                          .1
                                  1
                                                   1
       1
                          1
                                   2
CQUAD4
                 1
                                           13
                                                   12
        1
=,*1,=,*1,*1,*1,*1
=8
CQUAD4
                          12
                                  13
                                           24
                                                    23
         11
                 1
=,*1,=,*1,*1,*1,*1
=8
CQUAD4
         21
                 1
                          23
                                   24
                                           35
                                                   34
=,*1,=,*1,*1,*1,*1
=8
CQUAD4
         31
                 1
                          34
                                   35
                                           46
                                                    45
=,*1,=,*1,*1,*1,*1
=8
                                           .282
MAT1
         1
                  3.+7
                                   .3
GRID
         1
                          Ο.
                                   Ο.
                                           Ο.
=,*1,=,*0.5,==
=9
                          0.
                                   .5
                                           Ο.
GRID
        12
=,*1,=,*0.5,==
=9
GRID
        23
                          0.
                                  1.
                                           0.
=,*1,=,*0.5,==
=9
```

GRID 34 0. 1.5 0. =,*1,=,*0.5,== =9 GRID 45 0. 2. 0. =,*1,=,*0.5,== =9 SPC1 1 12345 1 12 23 34 45 ENDDATA

WORKSHOP 1

		works	hops.	der data.	THIS HI		
GRID	1		0.	0.	0.		
=,*1,=,*(0.5,==						
=9							
GRID	12		0.	.5	0.		
=,*1,=,*0	0.5,==						
=9							
GRID	23		0.	1.	0.		
=,*1,=,*(0.5,==						
=9							
GRID	34		0.	1.5	0.		
=,*1,=,*0	0.5,==						
=9							
GRID	45		0.	2.	0.		
=,*1,=,*(0.5,==						
=9							
PSHELL	1	1	.1	1		1	
CQUAD4	1	1	1	2	13	12	
=,*1,=,*1	1,*1,*1,	*1					
=8							
CQUAD4	11	1	12	13	24	23	
=,*1,=,*1	1,*1,*1,	*1					
=8							
CQUAD4	21	1	23	24	35	34	
=,*1,=,*1	1,*1,*1,	*1					
=8							
CQUAD4	31	1	34	35	46	45	
=,*1,=,*1	1,*1,*1,	*1					
=8	_			2			
MAT1	1	3.+7	-	.3	.282	2.4	4.5
SPC1	1	12345	1	12	23	34	45

11a. We will also create an input file **plate.bdf**, which contains all the relevant model data. This file is to be used in later workshops.

Submitting the input file for analysis:

- 12. Submit the input file to MSC.Nastran for analysis.
 - 12a. To submit the MSC.Patran **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob1.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 12b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob1 scr=yes. Monitor the run using the UNIX ps command.
- 13. When the run is completed, edit the **prob1.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 14. While still editing **prob1.f06**, search for the word:

R E A L (spaces are necessary)

 $1st = _Hz$ $2nd = _Hz$ $3rd = _Hz$ $4th = _Hz$

5th = _____Hz

Comparison of Results

15. Compare the results obtained in the **.f06** file with the follwoing results:

			REAL	EIGENVA	LUES	
MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED
NO.	ORDER				MASS	STIFFNESS
1	1	7.056994E+05	8.400591E+02	1.336996E+02	1.000000E+00	7.056994E+05
2	2	1.878432E+07	4.334088E+03	6.897916E+02	1.000000E+00	1.878432E+07
3	3	2.811467E+07	5.302327E+03	8.438915E+02	1.000000E+00	2.811467E+07
4	4	1.931709E+08	1.389859E+04	2.212030E+03	1.000000E+00	1.931709E+08
5	5	2.234434E+08	1.494802E+04	2.379052E+03	1.000000E+00	2.234434E+08

16. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

17. Proceed with the Reverse Translation process, that is attaching the **prob1.xdb** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method

Attach XDB
Result Entities
Local

Select Results File...

Select Results File

prob1.xdb	

OK	
Apply	

To simplify the view, turn off the entity labels using the toolbar.

In addition, switch to a 3 view isometric view point.

When the translation is complete bring up the *Results* form.

Results

Action:

Object:

Select Results Cases

Select Deformation Result

Apply

The results should resemble Figure 1.6.

MSC.Nastran 102 Exercise Workbook

WORKSHOP 1

To reset the graphics, click on this icon:

Repeat the procedure to view the other mode shapes.

Quit MSC.Patran when you are finished with this exercise.

MSC.Nastran 102 Exercise Workbook

WORKSHOP 2

Modal Analysis of A Flat Plate using Static Reduction

Objectives

- Reduce the dynamic math model, created in Workshop 1, to one with fewer degrees of freedom.
- Produce a MSC.Nastran input file.
- Submit the file for analysis in MSC.Nastran.
- Find the first five natural frequencies and mode shapes of the flat plate.

MSC.Nastran 102 Exercise Workbook

Model Description:

For this example, reduce the dynamic math model created in Workshop 1, using static reduction. Then find the first five natural frequencies and mode shapes using the Automatic Givens method. Use the points indicated in Figure 2.2 for the A-set.

Figure 2.1-Grid Coordinates and Element Connectivities

45		46		47		48		49		50		51		52		53		54		55	
	31		32		33		34		35		36		37		38		39		40		
34		35		36		37		38		39		40		41		42		43		44	
	21		22		23		24		25		26		27		28		29		30		
23		24		25		26		27		28		29		30		31		32		33	b
	11		12		13		14		15		16		17		18		19		20		
12		13		14		15		16		17		18		19		20		21		22	
	1		2		3		4		5		6		7		8		9		10		
1		2		3		4		5		6		7		8		9		10		11	

_

a

z

Х

Y

MSC.Nastran 102 Exercise Workbook

Figure 2.2-Loads and Boundary Conditions

Table 2.1	
Length (a)	5 in
Height (b)	2 in
Thickness	0.100 in
Weight Density	0.282 lbs/in ³
Mass/Weight Factor	2.59E-3 sec ² /in
Elastic Modulus	30.0E6 lbs/in ²
Poisson's Ratio	0.3
Suggested Exercise Steps

- Reference a previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Prepare the model for a normal modes analysis (SOL 103 and PARAMs).
 - PARAM, WTMASS, 0.00259
 - PARAM, COUPMASS, 1
- Define degrees of freedom in the analysis set (ASET) for grids indicated in Figure 2.2.
- Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis.
- Review the results, specifically the eigenvalues.

ID SEMINAR, PROB2

CEND

BEGIN BULK

Modal Analysis of a Flat Plate using Static Reduction

1	2	3	4	5	6	7	8	9	10

WORKSHOP 2

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 7, otherwise, proceed to step 2.
- 2. Create a new database named **prob2.db**.

File/New Database

New Database Name

prob2

◆ Default

MSC/NASTRAN

OK

In the	New	Model	Preferen	ce form	set the	following:
						<u> </u>

Tolerance

Analysis Code:

OK

3. Create the model by importing an existing MSC.Nastran input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method

Select Input File...

Select File

OK	
Apply	
OK	
ОК	

Read	Input File	

Translate

Model Data

plate.bdf

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Add the pre-defined constraints into the **Default** load case.

♦ Load Cases

Action:

Select Load Case to Modify (Highlight the following:)

Select Individual Load/BCs (Highlight the following:)

OK	
Apply	

6. Create the new analysis deck.

♦ Analysis

Action:

Object:

Method

Jobname:

Translation Parameters...

Data Output:

OK

Solution Type...

Solution Type:

Solution Parameters...

Mass Calculation:

Data Deck Echo:

Wt. -Mass Conversion =

OK

Direct Text Input...

In the *Bulk Data Section*, type in the following:

ASET1, 345, 3, 5, 7, 9, 11

MSC.Nastran 102 Exercise Workbook

Modify	
Default	

Displ_spc1.1

Analyze

Entire Model

Analysis Deck

prob2

XDB and Print

◆ NORMAL MODES

Coupled	
Unsorted	
.00259	

Modal Analysis of a Flat Plate using Static Reduction WORKSHOP 2 ASET1, 345, 25, 27, 29, 31, 33 ASET1, 345, 47, 49, 51, 53, 55 OK Subcase Create... Available Subcases Default Subcase Parameters... Extraction Method: **Automatic Givens** Number of Desired Roots = 5 OK **Output Requests...** Under Output Requests, highlight: **SPCFORCES**(**SORT1,Real**)=All FEM

Delete	
OK	
Apply	
Cancel	
Apply	

An MSC.Nastran input file called **prob2.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 8.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from Table 2.1. The result should be similar to the output below.

7. MSC.Nastran input file: prob2.dat

```
ID SEMINAR, PROB2
SOL 103
TIME 10
CEND
TITLE = REDUCTION PROCEDURES, NORMAL MODES EXAMPLE
SUBTITLE = USING STATIC REDUCTION
ECHO = UNSORTED
SUBCASE 1
   SUBTITLE=USING LANCZOS
  METHOD = 1
   SPC = 1
   VECTOR=ALL
BEGIN BULK
EIGR, 1, AGIV, , , , 5
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
INCLUDE 'plate.bdf'
$
$ SELECT A-SET, STATIC REDUCTION IS DONE AUTOMATICALLY
$
ASET1,345,3,5,7,9,11
ASET1,345,25,27,29,31,33
ASET1,345,47,49,51,53,55
ENDDATA
```

Submitting the input file for analysis:

WORKSHOP 2

- 8. Submit the input file to MSC.Nastran for analysis.
 - 8a. To submit the MSC.Patran **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob2.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 8b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob2 scr=yes. Monitor the run using the UNIX ps command.
- 9. When the run is completed, edit the **prob2.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 10. While still editing **prob2.f06**, search for the word:

R E A L (spaces are necessary)

 $1st = \underline{Hz}$ $2nd = \underline{Hz}$ $3rd = \underline{Hz}$

4th = _____Hz

5th = _____Hz

Comparison of Results

11. Compare the results obtained in the **.f06** file with the following results:

MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED
NO.	ORDER				MASS	STIFFNESS
1	43	7.057452E+05	8.400864E+02	1.337039E+02	1.00000E+00	7.057452E+05
2	45	1.880877E+07	4.336908E+03	6.902404E+02	1.00000E+00	1.880877E+07
3	44	2.818009E+07	5.308492E+03	8.448727E+02	1.00000E+00	2.818009E+07
4	42	1.956108E+08	1.398609E+04	2.225956E+03	1.00000E+00	1.956108E+08
5	41	2.367820E+08	1.538772E+04	2.449032E+03	1.00000E+00	2.367820E+08

- 12. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.
- 13. Proceed with the Reverse Translation process, that is attaching the **prob2.xdb** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method

Select Results File...

Select Results File

Attach XDB
Result Entities
Local

prob2.xdb

OK	
Apply	

To simplify the view, turn off the entity labels using the toolbar.

In addition, switch to a 3 view isometric view point.

When the translation is complete bring up the *Results* form.

♦ Results

Action:

Object:

Select Results Case

Select Deformation Result

Deformation

Default, A1:Mode1: Freq. =133.7

2-15

Eigenvectors, Translational

Apply

Reset the graphics by clicking on this icon:

You can go back and select any Results Case, Fringe Results or Deformation Results you are interested in.

Quit MSC.Patran when you are finished with this exercise.

WORKSHOP 3

Direct Transient Response Analysis

Objectives

- Define time-varying excitation.
- Produce a MSC.Nastran input file from dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC.Nastran.
- Compute nodal displacements for desired time domain.

MSC.Nastran 102 Exercise Workbook

Model Description:

WORKSHOP 3

Using the direct method, determine the transient response of the flat rectangular plate, created in Workshop 1, under time-varying excitation. This example structure shall be excited by 1 psi pressure load over the total surface of the plate varying at 250Hz. In addition, a 50 lb force is applied at a corner of the tip also varying at 250Hz but out-of-phase with the pressure load. Both time dependent dynamic loads are applied for the duration of 0.008 seconds only. Use structural damping of g=0.06 and convert this damping to equivalent viscous damping at 250Hz. Carry the analysis for 0.04 seconds.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 3.1-Loads and Boundary Conditions

Suggested Exercise Steps

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Define the time-varying pressure loading (PLOAD2, LSEQ and TLOAD2). (Hint, be certain to specify phase angle since the applied loads are out-of-phase).
- Define the time-varying tip load (DAREA and TLOAD2). (Again, be certain to specify the phase angle).
- Combine the time-varying loads (DLOAD).
- Specify integration time steps (TSTEP).
- Prepare the model for a direct transient analysis (SOL 109).
- Specify the structural damping and convert this damping to equivalent viscous damping.
 - PARAM, G, 0.06
 - PARAM, W3, 1571.0
- Request response in terms of nodal displacement at grid points 11, 33 and 55.
- Generate an input file and submit it to the MSC.Nastran solver for direct transient analysis.
- Review the results, specifically the nodal displacements and xy-plot output.

ID SEMINAR, PROB3

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 3

1	2	3	4	5	б	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 13, otherwise, proceed to step 2.
- 2. Open a new database named **prob3.db**.

File/New

New Database Name

prob3

OK

In the New Model Preferences form, set the following:

Tolerance

Analysis Code:

♦ Default

MSC/NASTRAN

OK

3. Create the model by importing an existing MSC.Nastran input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method

Read Input File
Model Data
Mouci Data
Translate

Dood Input File

plate.bdf

Select File

Select Input File

OK	
Apply	
OK	

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Add the pre-defined constraints into the default load case.

♦ Load Cases

Action:

WORKSHOP 3

Load Case Name

Load Case Type:

Create transient_response Time Dependent Displ_spc1.1

Assign/Prioritize Loads/BCs

Select Individual Load/BCs (Select from menu.)

OK Apply

6. Create a time-dependent field for the transient response of the pressure loading.

♦ Fields	
Action:	Create
Object:	Non Spatial
Method	Tabular Input
Field Name	time_dependent_pressure
[Options]	
Maximum Number of t	21
ОК	
Input Data	
Map Function to Table	
PCL Expression f'(t):	sind(360.*250.*'t)
Start Time	0.0
End Time	0.008
Number of Points	20
Apply	

Cancel

In the *Time/Frequency Scalar Table Data* window, add the following to Row 21:

7. Create another time-dependent field for the transient response of the nodal force.

♦ Fields

Action:

Object:

Method

Field Name

[Options ...]

Maximum Number of t

OK

Input Data ...

Map Function to Table...

PCL Expression f'(t)

Start Time

End Time

Number of Points

Non Spatial
Tabular Input
time_dependent_force
21

Create

-sind(360*250*'t)	
0.0	_
0.008	
20	

Direct Transient Response Analysis

In the *Time/Frequency Scalar Table Data* window, add the following to Row 21:

Create

pressure

2D

-1

Note: The default direction of pressure in MSC.Patran is opposite

Pressure

Element Uniform

8. Create the time dependent pressure.

♦ Loads/BCs

Action:

WORKSHOP 3

Object:

Type:

New Set Name

Target Element Type:

Input Data...

Top Surf Pressure

f:time_dependent_pressure

box)

Select Application Region...

* Time/Freq. Dependence: (Select from the **Time Dependent Fields**

from default MSC.Nastran assumption.

◆ FEM

Select 2D Elements or Edge (Select all elements)

Apply

9. Create the time-dependent nodal force.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Spatial Dependence Force <F1 F2 F3>

* Time/Freq. Dependence: (Select from the Time Dependent Fields box)

OK

Select Application Region...

♦ FEM

Select Nodes

Create	
Force	
Nodal	
force	

<0 0 50>

f:time_dependent_force

Node 11

To simplify the view, turn off the entity labels using the toolbar.

In addition, switch to a 3 view isometric view point.

Action:

Plot Markers

Under Assigned Load/BC Sets, highlight:

Displ_spc1.1

Force_force

WORKSHOP 3

Press_pressure

Under Select Groups, highlight:

default_group

The result should be similar to **Figure 3.2**.

Figure 3.2-The model with loads and boundary conditions applied.

10. Create the analysis.

Formulation:	Direct
Solution Parameters	
Mass Calculation:	Coupled
WtMass Conversion =	.00259
Struct. Damping Coeff. =	0.06
W3, Damping Factor =	1571
ОК	
ОК	
Subcase Create	
Available Subcases (Select from menu.)	transient_response
Subcase Parameters	
Time Recovery Points	DEFINE TIME STEPS
Number of Time Steps =	100
Delta - T	.0004
(Hit Return to Input Data.	
ОК	
ОК	
Output Requests	
Form Type:	Advanced
Under Output Requests, highligh	t:
SPCFORCES(SORT1,Real)=Al	ll FEM
Delete	
Output Requests:	select DISPLACEMENT (
Options/Sorting:	By Freq/Time
Modify	

MSC.Nastran 102 Exercise Workbook

OK

Apply

Cancel

Subcase Select...

Subcases Selected: (Click to de-select.)

Subcases for Solution Sequence: 109 (Click to select.) Default

transient_response

OK

Apply

An MSC.Nastran input file called **prob3.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 14.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data previously stated. The result should be similar to the output below.

11. MSC.Nastran input file: prob3.dat

```
ID SEMINAR, PROB3
SOL 109
TIME 30
CEND
TITLE= TRANSIENT RESPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS
SUBTITLE= USE THE DIRECT METHOD
ECHO= PUNCH
SPC= 1
SET 1= 11, 33, 55
DISPLACEMENT= 1
SUBCASE 1
DLOAD= 700 $ SELECT TEMPORAL COMPONENT OF TRANSIENT LOADING
LOADSET= 100 $ SELECT SPACIAL DISTRIBUTION OF TRANSIENT LOADING
TSTEP= 100 $ SELECT INTEGRATION TIME STEPS
$
OUTPUT (XYPLOT)
XGRID=YES
YGRID=YES
XTITLE= TIME (SEC)
YTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER
XYPLOT DISP RESPONSE / 11 (T3)
YTITLE= DISPLACEMENT RESPONSE AT CENTER TIP
XYPLOT DISP RESPONSE / 33 (T3)
YTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER
XYPLOT DISP RESPONSE / 55 (T3)
Ś
BEGIN BULK
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
$
$ SPECIFY STRUCTURAL DAMPING
$ 3 PERCENT AT 250 HZ. = 1571 RAD/SEC.
$
PARAM, G, 0.06
```

WORKSHOP 3 Direc

```
PARAM, W3, 1571.
$
$ APPLY UNIT PRESSURE LOAD TO PLATE
$
LSEQ, 100, 300, 400
$
PLOAD2, 400, 1., 1, THRU, 40
$
$ VARY PRESSURE LOAD (250 HZ)
$
TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90.
$
$ APPLY POINT LOAD OUT OF PHASE WITH PRESSURE LOAD
$
TLOAD2, 500, 600, , 0, 0., 8.E-3, 250., 90.
$
DAREA, 600, 11, 3, 1.
$
$ COMBINE LOADS
$
DLOAD, 700, 1., 1., 200, 50., 500
$
$ SPECIFY INTERGRATION TIME STEPS
$
TSTEP, 100, 100, 4.0E-4, 1
$
ENDDATA
```

Submitting the input file for analysis:

- 12. Submit the input file to MSC.Nastran for analysis.
 - 12a. To submit the MSC.Patran **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob3.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 12b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob3 scr=yes. Monitor the run using the UNIX ps command.
- 13. When the run is completed, use **plotps** utility to create a postscript file, **prob3.ps**, from the binary plot file **prob3.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 3.2, 3.3 and 3.4.
- 14. Edit the **prob3.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 15. While still editing **prob3.f06**, search for the word:

DISPL (spaces are necessary)

Displacement at Grid 11

Displacement at Grid 55

WORKSHOP 3

Time		T3
.0024	=	
.0052	=	
.02	=	

	POINT-ID :	=	11							
					DISP	LACEMENT	VECTOR			
	TIME	TYPE		Т1	Т2	Т3	R1	R2		R3
	0.0	G	0.0		0.0	0.0	0.0	0.0	0.0	
	4.00000E-04	G	0.0		0.0	-2.173625E-02	1.104167E-02	1.050818E-02	0.0	
	8.00000E-04	G	0.0		0.0	-7.204904E-02	2.847414E-02	2.852519E-02	0.0	
—	1.200000E-03	G	0.0		0.0	-1.433462E-01	4.082027E-02	4.915178E-02	0.0	
1										
-										
. 7										
1	3.879996E-02	G	0.0		0.0	-3.726422E-02	-6.629907E-05	1.039267E-02	0.0	
Õ	3.919996E-02	G	0.0		0.0	-2.122380E-02	-1.431050E-05	5.916678E-03	0.0	
5	3.959996E-02	G	0.0		0.0	-2.998187E-03	-7.089762E-06	8.371174E-04	0.0	
1 20	3.999996E-02	G	0.0		0.0	1.535974E-02	5.380207E-06	-4.281030E-03	0.0	
sti										
2	POINT-ID =		33							
					DISP	LACEMENT	VECTOR			
se	TIME	TYPE		Τ1	Т2	Т3	Rl	R2		R3
. S	0.0	G	0.0		0.0	0.0	0.0	0.0	0.0	
- 	4.00000E-04	G	0.0		0.0	-1.122398E-02	9.220218E-03	6.138594E-03	0.0	
เล	8.00000E-04	G	0.0		0.0	-4.424753E-02	2.576699E-02	2.014980E-02	0.0)
ve	1.200000E-03	G	0.0		0.0	-1.030773E-01	3.819036E-02	3.922388E-02	0.0	
f	•									
Ìn	•									
. si	•									
le	3.879996E-02	G	0.0		0.0	-3.729695E-02	1.898676E-05	1.037927E-02	0.0	
d	3.919996E-02	G	0.0		0.0	-2.121863E-02	3.488550E-05	5.907703E-03	0.0	
tł	3.959996E-02	G	0.0		0.0	-3.002583E-03	-2.228106E-07	8.361273E-04	0.0	
nis	3.999996E-02	G	0.0		0.0	1.535096E-02	-3.032754E-05	-4.274252E-03	0.0	
•										
X	POINT-ID =		55			тасемент	VECTOD			
ere					DISP	LACEMENI	VECIOR			
cis	TTME	TVDF		rr 1	т .)	тз	ם1	D 2		53
e.	0 0	G	0 0	11	0 0	0 0	0.0	0.0	0 0	105
	4.00000E-04	G	0.0		0.0	-2.849185E-03	7.791447E-03	4.611430E-03	0.0	
	8 000000E-04	G	0 0		0 0	-1 992890E-02	2 322436E-02	1 681028E-02	0 0	
õ	1.200000E-03	G	0.0		0.0	-6.643156E-02	3.540079E-02	3.501805E-02	0.0	
i i		-								
a	•									
IT										
ĩ	3.879996E-02	G	0.0		0.0	-3.722652E-02	1.035188E-04	1.039059E-02	0.0	
	3.919996E-02	G	0.0		0.0	-2.115454E-02	8.268487E-05	5.912832E-03	0.0	
	3.959996E-02	G	0.0		0.0	-2.998628E-03	6.654292E-06	8.371378E-04	0.0	
	3.999996E-02	G	0.0		0.0	1.529953E-02	-6.482315E-05	-4.277684E-03	0.0	
	· · · · · · · · · · · · · · · · · · ·	-								

MSC.Nastran 102 Exercise Workbook

Users should proceed to the next step.

3-20

16.

Compare the results obtained in the **.f06** file with the following results:

18. Proceed with the Reverse Translation process, that is attaching the prob3.xdb results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis Action: **Attach XDB Object: Result Entities** Method Local Select Results File... Select File prob3.xdb OK

When the translation is complete bring up the **Results** form.

♦ Results

Action:

Apply

WORKSHOP 3

Object:

Select Results Cases

Filter Method

Filter
Apply
Close

y:

Select y Result:

Quanity:

x:

Variable:

Create Graph

Transient_response, 0 of 101 subcases

All

Result **Displacement**, Translational

Global Variable

Z Component

Time

Select the target entities form by clicking on this Icon

Target Entities

MSC.Nastran 102 Exercise Workbook

Target Entities

Select Nodes:

Node 11

Apply

You may reset the graphics by clicking on this icon :

Figure 3.3-Displacement Response at Node 11

To Plot Node 33 and 55, simply select them..

Figure 3.4-Displacement Response at Node 33

Select Nodes:

Node 55

Apply

WORKSHOP 3

Figure 3.5-Displacement Response at Node 55

Quit MSC.Patran when you are finished with this exercise.

MSC.Nastran 102 Exercise Workbook

MSC.Nastran 102 Exercise Workbook
WORKSHOP 4

Modal Transient Response Analysis

Objectives

- Define time-varying excitation.
- Produce a MSC.Nastran input file from a dynamic math model, created in Workshop 1.
- Submit the file for analysis in MSC.Nastran.
- Compute nodal displacements for desired time domain.

MSC.Nastran 102 Exercise Workbook

Model Description:

WORKSHOP 4

Using the Modal Method, determine the transient response of the flat rectangular plate, created in Workshop 1, under time-varying excitation. This example structure shall be excited by a 1 psi pressure load over the total surface of the plate varying at 250Hz. In addition, a 25 lb force is applied at a corner of the tip also varying at 250Hz but starting 0.004 seconds after the pressure load begins. Both time-dependent dynamics loads are applied only for the duration of 0.008 seconds only. Use a modal damping of $\zeta = 0.03$ for all nodes. Carry out the analysis for 0.04 seconds.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 4.1-Loads and Boundary Conditions

Suggested Exercise Steps

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Specify modal damping as a tabular function of natural frequency (TABDMP1).
- Define the time-varying pressure loading (PLOAD2, LSEQ and TLOAD2).
- Define the time-varying tip load (DAREA and TLOAD2).
- Define the time delay term in the equations of the dynamic loading function (DELAY).
- Combine the time-varying loads (DLOAD).
- Specify integration time steps (TSTEP).
- Prepare the model for a modal transient analysis (SOL 112).
- Request response in terms of nodal displacement at grid 11, 33, and 55.
- Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis.
- Review the results, specifically the nodal displacements.

ID SEMINAR, PROB4

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 4

Modal Transient Response Analysis

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 11, otherwise, proceed to step 2.
- 2. Create a new database and named prob4.db.

File/New

New Database Name

prob4

OK

In the New Model Preferences form, set the following:

Tolerance

Analysis code:

◆ Default

MSC/NASTRAN

OK

3. Create the model by importing an existing MSC.Nastran input file, (plate.bdf).

Г

♦ Analysis

Action:

Object:

Method:

Read Input File
Model Data
Translate

plate.bdf

Select Input File

OK	
Apply	
OK	

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Add the pre-defined constraints into a newly defined load case.

♦ Load Cases

Action:

WORKSHOP 4

Load Case Name:

Load Case Type:

Create transient_response Time Dependent

Assign/Prioritize Loads/BCs

Select Individual Load/BCs (Select from menu.)

OK Apply Displ_spc1.1

6. Create a time-dependent field for the pressure loading.

♦ Fields

Action:

Object:

Method:

Field Name:

Options ...

Maximum Number of t:

OK

Input Data ...

Map Function to Table...

PCL Expression f'(t):

Start time:

End time:

Number of Points:

Apply

Cancel

Create

Non Spatial Tabular Input

time_dependent_pressure

sind(360.*250.*'t)	
0.0	
0.008	
20	

Go back to the *Time/Frequency Scalar Table Data* window, go down to row 21, and add the following:

Create

32

Non Spatial

Tabular Input

time_dependent_force

7. Create a time-dependent field for the nodal force.

♦ Fields

Action:

Object:

Method:

Field Name:

Options...

Maximum Number of t:

OK

Input Data...

Map Function to Table...

PCL Expression f'(t):

Start time:

End time:

Apply

Cancel

Number of Points:

 sind(360.*250.*('t-0.004))

 0.004

 0.012

 31

Go back to the *Time/Frequency Scalar Table Data* window, go down to row 32, and add the following:

ОК	
Apply	

WORKSHOP 4

8. Create the time-dependent pressure.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name:

Target Element Type:

Input Data...

Top Surf Pressure

* Time/Freq. Dependence (Select from the Time Dependent Fields box.)

OK

Select Application Region ...

◆ FEM

Select 2D Elements or Edge (Click and mouse drag to select all elements.)

9. Create the time-dependent nodal force.

V Loads/DCs	
Action:	Create
Object:	Force
Type:	Nodal
New Set Name:	force

MSC.Nastran 102 Exercise Workbook

Pressure	
Element Uniform	1
pressure	-

Create

2D

Elm 1:40

4-11

◆ Loads/RCs

Input Data ...

Force <*F1 F2 F3*>

* Time/Freq. Dependence (Select from the Time Dependent Fields box.)

OK

Select Application Region ...

♦ FEM

Select Nodes

<0	0	25>	

f:time_dependent_force

Node 11

Add	
ОК	
Apply	

To simplify the view, turn off the entity labels using the toolbar.

In addition, switch to a 3 view isometric view point.

Action:

Plot Markers

Under Assigned Load/BC Sets, highlight:

Displ_spc1.1

Force_force

Press_pressure

Under Select Groups, highlight:

default_group

Apply

4-12

The result should be similar to Figure 4.2.

MSC.Nastran 102 Exercise Workbook

10. Generate the input file.

♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method:	Analysis Deck
Jobname:	prob4
Translation Parameters	
Data Output:	XDB and Print
ОК	
Solution Type	
Solution Type:	◆ TRANSIENT RESPONSE
Formulation	Modal
Solution Parameters	
Mass Calculation	Coupled
WtMass Conversion	.00259
Eigenvalue Extraction	

Number	of Desired Roots	5
OK		
OK		
OK		
Subcase	Create	
Availabl (Select from	e Subcases 1 menu.)	transient_response
Subcase	Parameters	
Time Re	covery Points	DEFINE TIME STEPS
Number	of Time Steps =	100
Delta - T	r.	.0004
(Hit Return	to Input Data.)	
OK		
Modal L	Damping	Crit. Damp. (CRIT)
DEFIN	E MODAL DAMPING	, F
	Frequency	Value
1	0	.03

ОК

2

ОК

Apply

--**PP-**3

Output Requests...

Form Type:

Advanced

.03

under Output Requests, highlight:

SPCFORCES(SORT1,Real)=ALL FEM

10

Delete

MSC.Nastran 102 Exercise Workbook

WORKSHOP 4

Output Requests:	select DISPLACEMENT
Sorting:	By Freq/Time
Modify	
ОК	
Apply	
Cancel	
Subcase Select Subcases Selected: (Click to deselect.)	default
Subcases for Solution Sequence: 112 (Click to select.)	transient_response
OK	

An MSC.Nastran input file called **prob4.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 12.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data previously stated. The result should be similar to the output below.

11. MSC.Nastran input File: prob4.dat

```
ID SEMINAR, PROB4
SOL 112
TIME 30
CEND
TITLE = TRANSIENT RESPONSE WITH TIME DEPENDENT PRESSURE AND POINT LOADS
SUBTITLE = USE THE MODAL METHOD
ECHO = UNSORTED
SPC = 1
SET 111 = 11, 33, 55
DISPLACEMENT(SORT2) = 111
SDAMPING = 100
SUBCASE 1
METHOD = 100
DLOAD = 700
LOADSET = 100
TSTEP = 100
$
OUTPUT (XYPLOT)
XGRID=YES
YGRID=YES
XTITLE= TIME (SEC)
YTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER
XYPLOT DISP RESPONSE / 11 (T3)
YTITLE= DISPLACEMENT RESPONSE AT TIP CENTER
XYPLOT DISP RESPONSE / 33 (T3)
YTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER
XYPLOT DISP RESPONSE / 55 (T3)
$
BEGIN BULK
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE PROBLEM
$
INCLUDE 'plate.bdf'
Ś
$ EIGENVALUE EXTRACTION PARAMETERS
$
```

Modal Transient Response Analysis

```
EIGRL, 100, , ,5
$
$ SPECIFY MODAL DAMPING
$
TABDMP1, 100, CRIT,
+, 0., .03, 10., .03, ENDT
$
$ APPLY UNIT PRESSURE LOAD TO PLATE
$
LSEQ, 100, 300, 400
$
PLOAD2, 400, 1., 1, THRU, 40
$
$ VARY PRESSURE LOAD (250 HZ)
$
TLOAD2, 200, 300, , 0, 0., 8.E-3, 250., -90.
$
$ APPLY POINT LOAD (250 HZ)
$
TLOAD2, 500, 600,610, 0, 0.0, 8.E-3, 250., -90.
$
DAREA, 600, 11, 3, 1.
DELAY, 610, 11, 3, 0.004
$
$ COMBINE LOADS
$
DLOAD, 700, 1., 1., 200, 25., 500
$
$ SPECIFY INTERGRATION TIME STEPS
$
TSTEP, 100, 100, 4.0E-4, 1
$
ENDDATA
```

WORKSHOP 4

Submitting the input file for analysis:

- 12. Submit the input file to MSC.Nastran for analysis.
 - 12a.To submit the MSC.Patran .bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob4.bdf scr=yes. Monitor the run using the UNIX ps command.
 - 12b.To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob4 scr=yes. Monitor the run using the UNIX ps command.
 - 13. When the run is completed, use **plotps** utility to create a postscript file, **prob4.ps**, from the binary plot file **prob4.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 4.3, 4.4, and 4.5.
- 14. When the run is completed, edit the **prob4.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 15. While still editing **prob4.f06**, search for the word:

DISPL (spaces are necessary)

Displacement at Grid 11.

Displacement at Grid 55.

Time T3

.0068= _____

.0092= _____

.02 = _____

POINT-ID = 11

DISPLACEMENT VECTOR

TIME	TYPE	Т1	Т2	Т3	R1	R2		R3
.0	G	.0	.0	.0	.0	.0	.0	
4.00000E-04	G	3.138503E-15	5.333171E-15	1.873720E-04	-6.340404E-06	5.161942E-05	.0	
5.999999E-03	G	9.901832E-1	3 2.054362E-1	2 1.177721E-	01 3.009433E-	03 -3.418436E-0	.0	
6.399998E-03	G	1.301660E-12	2.610037E-12	1.495051E-01	6.088505E-03	-4.068905E-02	.0	
6.799998E-03	G	1.361787E-12	2.701773E-12	1.469920E-01	1.272909E-02	-3.955902E-02	.0	
8.799998E-03	G	-1.399555E-12	-2.778663E-12	-1.534481E-01	-1.183270E-02	4.150834E-02	.0	
9.199998E-03	G	-1.565439E-12	-3.143368E-12	-1.692225E-01	-1.568289E-02	4.710494E-02	.0	
9.599999E-03	G	-1.396290E-12	-2.830759E-12	-1.533197E-01	-1.109114E-02	4.241555E-02	.0	
2.00000E-02	G	1.762308E-13	3.609815E-13	2.043042E-02	1.705799E-04	-5.402198E-03	.0	
3.959996E-02	G	5.328810E-14	1.099402E-13	6.485358E-03	-1.067494E-05	-1.817145E-03	.0	
POINT-ID =	:	33	DIS	GPLACEMI	ENT VEC	TOR		
TIME	TYPE	Т1	Т2	Т3	R1	R2		R3
.0	G	.0	.0	.0	.0	.0	.0	
4.00000E-04	G	-1.482405E-15	5.013036E-15	1.835858E-04	-3.682543E-14	5.086755E-05	.0	
5.999999E-03	G	-7.504724E-13	1.795108E-12	1.207052E-01	2.766146E-03	-3.436569E-02	.0	
6.399998E-03	G	-9.796515E-13	2.269019E-12	1.556774E-01	6.135463E-03	-4.140196E-02	.0	
6.799998E-03	G	-1.045427E-12	2.321332E-12	1.599741E-01	1.308315E-02	-4.083382E-02	.0	
7.199998E-03	G	-8.759517E-13	1.829195E-12	1.278863E-01	1.804037E-02	-3.306541E-02	.0	
8.799998E-03	G	1.073612E-12	-2.391129E-12	-1.655026E-01	-1.212454E-02	4.270243E-02	.0	
9.199998E-03	G	1.217997E-12	-2.696051E-12	-1.851369E-01	-1.596580E-02	4.844051E-02	.0	
2.00000E-02	G	-1.280910E-13	3.184533E-13	2.059413E-02	1.496853E-04	-5.411018E-03	.0	
3.959996E-02	G	-3.946867E-14	9.686225E-14	6.468208E-03	-2.682333E-05	-1.813416E-03	.0	
POINT-ID	=	55						
			DIS	PLACEME	NT VECT	OR		

16. Compare the results obtained in the .f06 file with the following results:

Comparison of Results

.0 5.161942E-05 .0 .0 .0 .0

R2

.0 .0 .0 .0 .0 .0 G 4.00000E-04 -4.974573E-15 5.435887E-15 1.873720E-04 6.340404E-06 G 6.399998E-03 G -2.151553E-12 2.189475E-12 1.615714E-01 5.634375E-03 -4.218743E-02 6.799998E-03 -2.229502E-12 2.212659E-12 1.728057E-01 1.248924E-02 -4.215589E-02 G 7.199998E-03 G -1.757434E-12 1.697970E-12 1.456460E-01 1.736620E-02 -3.459810E-02 8.799998E-03 2.297826E-12 -2.283533E-12 -1.773652E-01 -1.152392E-02 4.395273E-02 G .0 2.561482E-12 -2.555566E-12 -2.007833E-01 -1.524836E-02 4.984966E-02 9.199998E-03 G .0 2.290908E-12 -2.331874E-12 -1.754856E-01 -1.067918E-02 4.413952E-02 9.599999E-03 G .0 2.00000E-02 G -2.917673E-13 3.108817E-13 2.072625E-02 1.192453E-04 -5.428383E-03 .0 3.959996E-02 G -8.886282E-14 9.431532E-14 6.432103E-03 -4.190110E-05 -1.814187E-03 .0

т2

т3

R1

4-20

TIME

TYPE

т1

WORKSHOP 4 Modal

17. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

18. Proceed with the Reverse Translation process, that is attaching the **prob4.xdb** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:	Attach XDB
Object:	Result Entities
Method:	Local
Select Results File	
Select Results File	prob4.xdb
ОК	
Apply	

When the translation is complete bring up the **Results** form.

♦ Results

Action: Object:

. . . .

Select Results Cases

Filter Method

Filter	
Apply	
Close	
<i>y</i> :	

Select y Result:

Quanity:

Variable:

x:

Fransient_response, 0	of 101 subcases
Graph	
Create	

Result	
Displacement	, Translational
Z Component	
Global Variab	ole
Time	

Target Entities

Select Nodes:

Node 11

Apply

The output should look similar to Figure 4.3.

19. Repeat the procedure to find the nodal displacement for Node 33.

The output should look similar to Figure 4.4.

Figure 4.4-Displacement Response at Tip Center

20. Repeat the procedure to find the nodal displacement for Node 55.

Select Nodes:

Node 55

Apply

WORKSHOP 4

The output should look similar to Figure 4.5.

Figure 4.5-Displacement Response at Opposite Corner

Quit MSC.Patran when you are finished with this exercise.

WORKSHOP 5

Direct Frequency Response Analysis

Objectives:

- Define frequency-varying excitation.
- Produce a MSC.Nastran input file from dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC.Nastran.
- Compute nodal displacements for desired frequency domain.

MSC.Nastran 102 Exercise Workbook 5-1

MSC.Nastran 102 Exercise Workbook

Model Description:

Using the direct method, determine the frequency response of the flat rectangular plate, created in Workshop 1, under frequency-varying excitation. This example structure shall be excited by a unit load at a corner of the tip. Use a frequency step of 20 Hz between a range of 20 and 1000 Hz. Use structural damping of g=0.06.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 5.1-Loads and Boundary Conditions

5-3

Suggested Exercise Steps:

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement
- Define the frequency-varying tip load (DAREA and RLOAD2).
- Define a set of frequencies to be used in the solution (FREQ1).
- Prepare the model for a direct frequency response analysis (SOL 108).
- Specify the structural damping.
 - PARAM, G, 0.06
- Request response in terms of nodal displacement at Grids 11, 33 and 55.
- Generate an input file and submit it to the MSC.Nastran solver for direct transient analysis.
- Review the results, specifically the nodal displacements and phase angles.

ID SEMINAR, PROB5

CEND

BEGIN BULK

MSC.Nastran 102 Exercise Workbook

1	2	3	4	5	6	7	8	9	10

WORKSHOP 5 Direct Frequency Response Analysis

1	2	3	4	5	б	7	8	9	10

ENDDATA

5-7

Exercise Procedure:

- Users who are not utilizing MSC.Patran for generating an input file 1. should go to Step 9, otherwise, proceed to step 2.
- 2. Create a new database called **prob5.db**.

File/New

New Database Name:

prob5

OK

In the New Model Preferences form, set the following:

Tolerance:

Analysis Code:

Analysis Type:

OK

◆ Default MSC/NASTRAN Structural

3. Create the model by importing an existing MSC.Nastran input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method:

Select Input File ...

Read Input file
Model Data

Translate

plate.bdf

OK	
Apply	
OK	

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

5. Create a frequency dependent load case for the frequency response.

6. Create a frequency dependent field for the frequency dependent load.

◆ Fields Action: Create **Object: Non Spatial** Method: **Tabular Input** frequency_dependent_load Field Name Frequency (f) Active Independent Variables [Options ...] 2 *Maximum Number of f:* OK Input Data...

Using the data in the table below, enter the values describing the frequency dependent force into the *Time/Frequency Scalar Table Data* form.

2	1000	1.0
OK		
Apply		

7. Create the frequency dependent unit force.

♦ Load/BCs

Action:

Object:

Type:

New Set Name:

Input Data...

Spatial Dependence/Force:

* *Time/Freq. Dependence:* (Select from the **Time Dependent Fields** box)

Create	
Force	
Nodal	
unit force	

<0 0 1>

f:frequency_dependent_load

OK

Select Application Region...

FEM

Select Nodes:

Node 11

ОК	
Apply	

To better visualize the model, hide the entity labels and switch to an isometric view using the icons below:

Action:

Plot Markers

Under Assigned Load/BC Sets, highlight:

MSC.Nastran 102 Exercise Workbook

Displ_spc1.1

Force_unit_force

Under Select Groups, highlight:

default_group

Apply

The model should be similar to Figure 5.2.

8. Now you are ready to generate an input file for analysis.

Click on the **Analysis** radio button on the Top Menu Bar and complete the entries as shown here.

5-11

Job Name	prob5
Translation Parameters	
Data Output:	XDB and Print
ОК	
Solution Type	
Solution Type:	◆ FREQUENCY RESPONSE
Formulation:	Direct
Solution Parameters	
Mass Calculation:	Coupled
WtMass Conversion=	0.00259
Struct. Damping Coeff. =	0.06
ОК	
ОК	
Subcase Create	
Available Subcases	frequency_response
Subcase Parameters	
DEFINE FREQUENCIES]
Starting Frequency = (Hit Return to Input Data.)	20
Ending Frequency = (Hit Return to Input Data.)	1000
# of Freq. Increments = (Hit Return to Input Data.)	49
ОК	
ОК	
Output Requests	
Form Type:	Advanced

under Output Request highlight: SPCFORCES(SORT1,Real)=All FEM

Delete
Output Requests:	select DISPLACEMENT
Sorting:	By Freq/Time
Modify	
ОК	
Apply	
Cancel	
Subcase Select]
Subcases Selected: (Click to de-select.)	Default
Subcases for Solution Sequence: 108	frequency_response
(Click to select.)	

An input file called **prob5.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran users should now proceed to Step 10.

5-13

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from page 5-3 (Model Description). The result should be similar to the output below.

9. MSC.Nastran input file: prob5.dat

```
ID SEMINAR, PROB5
SOL 108
TIME 30
CEND
TITLE = FREQUENCY RESPONSE DUE TO UNIT FORCE AT TIP
ECHO = UNSORTED
SPC = 1
SET 111 = 11, 33, 55
DISPLACEMENT(SORT2, PHASE) = 111
SUBCASE 1
DLOAD = 500
FREQUENCY = 100
$
OUTPUT (XYPLOT)
Ŝ
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
YBLOG= NO
XTITLE= FREQUENCY (HZ)
YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, PHASE
XYPLOT DISP RESPONSE / 11 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, PHASE
XYPLOT DISP RESPONSE / 33 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, PHASE
XYPLOT DISP RESPONSE / 55 (T3RM, T3IP)
$
BEGIN BULK
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
5-14
                MSC.Nastran 102 Exercise Workbook
```

WORKSHOP 5 Direct Frequency Response Analysis

```
$
$ SPECIFY STRUCTURAL DAMPING
$
PARAM, G, 0.06
$
$ APPLY UNIT FORCE AT TIP POINT
$
RLOAD2, 500, 600, , ,310
$
DAREA, 600, 11, 3, 1.0
$
TABLED1, 310,
, 0., 1., 1000., 1., ENDT
$
$ SPECIFY FREQUENCY STEPS
$
FREQ1, 100, 20., 20., 49
$
ENDDATA
```

5-15

Submitting the input file for analysis:

- 10. Submit the input file to MSC.Nastran for analysis.
 - 10a.To submit the MSC.Patran **.bdf** file, find an available UNIX shell window. At the command prompt enter **nastran prob5.bdf** scr=yes. Monitor the run using the UNIX ps command.
 - 10b.To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter nastran prob5 scr=yes. Monitor the run using the UNIX ps command.
- 11. When the run is completed, use **plotps** utility to create a postscript file, **prob5.ps**, from the binary plot file, **prob5.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 5-2 to 5-7.
- 12. When the run is completed, edit the **prob5.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

For MSC.Nastran users only. MSC.Patran users should skip to step 16.

13. While still editing **prob5.f06**, search for the word:

XY-OUTPUT SUMMARY (spaces are necessary).

Displacement at Grid 11

Frequency (X)	Ι	Displacement (Y)
140	=	
380	=	
Displacement a	at Gri	id 33
Frequency (X)	Ι	Displacement (Y)
140	=	
600	=	
Displacement a	at Gri	id 55
Frequency (X)	Ι	Displacement (Y)
140	=	
1000	=	

POINT-ID =		11							
				СОМРLЕХ	DISPLAC	EMENT V	ECTOR		
					(MAGNITUDE/	PHASE)			
FREQUENCY	TYPE		Т1	Т2	Т3	R1	R2	R3	3 🛏
2.000000E+01	G	0.0		0.0	8.817999E-03	6.435859E-04	2.632016E-03	0.0	4.
		0.0		0.0	356.4954	176.5664	176.5000	0.0	2
4.000000E+01	G	0.0		0.0	9.404316E-03	6.434991E-04	2.795561E-03	0.0	ĭ
		0.0		0.0	356.2596	176.5677	176.2785	0.0	3dı
9.799999E+02	G	0.0		0.0	9.965085E-04	2.691742E-04	4.097779E-04	0.0	ure
		0.0		0.0	187.6832	7.8008	15.1581	0.0	E-
1.000000E+03	G	0.0		0.0	8.803170E-04	2.354656E-04	3.317750E-04	0.0	le
		0.0		0.0	186.9299	8.2146	14.6645	0.0	res
DOINT-ID -	22								ults
FOINT ID -	55			СОМРЬЕХ	DISPLAC	EMENT V	ЕСТОR		of
					(MAGNITUDE/	PHASE)			ota
									in
FREQUENCY	TYPE		T1	Т2	Т3	R1	R2	R3	g ed
2.000000E+01	G	0.0		0.0	8.183126E-03	5.993295E-04	2.443290E-03	0.0	in
		0.0		0.0	356.4899	176.5639	176.4950	0.0	th
4.000000E+01	G	0.0		0.0	8.768992E-03	6.006200E-04	2.606561E-03	0.0	ē
		0.0		0.0	356.2376	176.5565	176.2581	0.0	f0
9.799999E+02	G	0.0		0.0	6.867234E-04	3.836353E-04	5.393046E-04	0.0	6 1
		0.0		0.0	188.0180	5.5597	10.0794	0.0	j[e
1.000000E+03	G	0.0		0.0	6.062436E-04	3.454144E-04	4.648783E-04	0.0	s.
		0.0		0.0	186.8358	5.4959	8.8514	0.0	/ith
		55							the
FOINT ID -		55		СОМРЬЕХ	DISPLAC	EMENT V	ECTOR		e fo
					(MAGNITUDE/	PHASE)			ollo
FREOUENCY	TYPE		т1	т2	Т3	R1	R2	R3	win
2.000000E+01	G	0.0		0.0	7.606255E-03	5.587703E-04	2.371172E-03	0.0	<u>ad</u>
		0.0		0.0	356.4844	176.5612	176.4928	0.0	res
4.000000E+01	G	0.0		0.0	8.190030E-03	5.613805E-04	2.534562E-03	0.0	Ľ
	-	0.0		0.0	356.2155	176.5442	176.2492	0.0	ts:
9.799999E+02	G	0.0		0.0	2.558788E-04	4.612964E-04	5.702980E-04	0.0	
		0.0		0.0	193.1958	4.6290	9.0143	0.0	
1.000000E+03	G	0.0		0.0	2.144666E-04	4.204372E-04	4.981144E-04	0.0	
		0.0		0.0	190.6200	4.3746	7.6762	0.0	
9.799999E+02 1.000000E+03 POINT-ID = FREQUENCY 2.000000E+01 4.000000E+01 9.799999E+02 1.000000E+03	G G TYPE G G G G	0.0 0.0 0.0 55 55 0.0 0.0 0.0 0.0 0.0 0.	Tl	0.0 0.0 0.0 0.0 C O M P L E X T2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	356.2376 6.867234E-04 188.0180 6.062436E-04 186.8358 D I S P L A C (MAGNITUDE/ T3 7.606255E-03 356.4844 8.190030E-03 356.2155 2.558788E-04 193.1958 2.144666E-04 190.6200	176.5565 3.836353E-04 5.5597 3.454144E-04 5.4959 E M E N T V T PHASE) R1 5.587703E-04 176.5612 5.613805E-04 176.542 4.612964E-04 4.6290 4.204372E-04 4.3746	176.2581 5.393046E-04 10.0794 4.648783E-04 8.8514 E C T O R R2 2.371172E-03 176.4928 2.534562E-03 176.2492 5.702980E-04 9.0143 4.981144E-04 7.6762	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	f06 file with the following results: $$

5-18

- 15. MSC.NastranMSC.Patran Users have finished this exercise. MSC.Patran Users should proceed to the next step.
- 16. Proceed with the Reverse Translation process, that is attaching the **prob5.xdb** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows.

♦ Analysis

Action:

Object:

Method:

Select Results File...

Select Available Files

Attach XDB
Result Entities
Local

prob5.xdb

OK Apply

17. Plot the results in XY plots.

The first plot is to make the Displacement versus Frequency plot at Node 11.

◆ Results	
Action:	Create
Object:	Graph
Method:	y vs x
Select Results Cases	Frequency_response, 0 of 50 subcases
Filter Method	All
Filter	
Apply	
Close	
Select Y result:	Displacement, Translational
Quanity:	Z Component

MSC.Nastran 102 Exercise Workbook 5-19

Apply

The next step is to make the plot of Phase versus Frequency.

Plot Options

Phase:

MSC.Nastran 102 Exercise Workbook

Figure 5.4-Phase Angle at Node 11

Repeat the above steps of plotting the XY plots of Node 11 for Node 33 and 55. Once again, push **Cancel** to remove any miscellaneous forms until the *Results Display* form.

Plot Options

Complex No as:

Magnitude

Node 33

Target Entities:

Select Nodes:

Apply

Figure 5.5-Displacement Response at Node 33

Plot Options

Complex No as:

Phase

Apply

Figure 5.6-Phase Angle at Node 33

Plot Options

Figure 5.7-Displacement Response at Node 55

Complex No as: Apply

Phase

Figure 5.8-Phase Angle at Node 55

Quit MSC.Patran when you have completed this exercise.

MSC.Nastran 102 Exercise Workbook

WORKSHOP 6

Modal Frequency

Response Analysis

Objectives:

- Define a frequency-varying excitation.
- Produce a MSC.Nastran input file from a dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC.Nastran.
- Compute nodal displacements for desired frequency domain.

MSC.Nastran 102 Exercise Workbook

Model Description:

Using the modal method, determine the frequency response of the flat rectangular plate, created in Workshop 1, excited by a 0.1 psi pressure load over the total surface of the plate and a 1.0 lb. force at a corner of the tip lagging 45° . Use a modal damping of $\xi = 0.03$. Use a frequency step of 20 hz between a range of 20 and 1000 hz; in addition, specify five evenly spaced excitation frequencies between the half power points of each resonant frequency between the range of 20-1000 hz.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 6.1-Loads and Boundary Conditions

Suggested Exercise Steps:

- Reference a previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Specify modal damping as a tabular function of natural frequency (TABDMP1).
- Define the frequency-varying pressure loading (PLOAD2, LSEQ and RLOAD2).
- Define the frequency-varying tip load (DAREA and RLOAD2).
- Define a set of frequencies to be used in the solution (FREQ1, FREQ4).
- Prepare the model for a modal frequency response analysis (SOL 111).
- Define the dynamic load phase lead modal frequency response (DPHASE).
- Request response in terms of nodal displacement at Grids 11, 33, and 55.
- Generate an input file and submit it to the MSC.Nastran solver for direct transient analysis.
- Review the results, specifically the nodal displacements and phase angles.

ID SEMINAR, PROB6

CEND

BEGIN BULK

MSC.Nastran 102 Exercise Workbook 6-5

1	2	3	4	5	6	7	8	9	10

WORKSHOP 6 Modal Frequency Response Analysis

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- Users who are not utilizing MSC.Patran for generating an input 1. file should go to Step 10, otherwise, proceed to step 2.
- 2. Create a new database called **prob6.db**.

File/New

New Database Name

prob6

OK

In the New Model Preferences form, set the following:

Tolerance

Analysis Code:

Analysis Type:

OK

◆ Default MSC/NASTRAN Structural

3. Create the model by importing an existing MSC.Nastran input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method

Select Input File...

Select File

OK	
Apply	
OK	

Read Input file

Model Data

Translate

plate.bdf

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Create a frequency dependent load case for the frequency response.

Cr	eat	te		

frequency_Response

Displ_spc1.1

Time Dependent

6. Create the frequency dependent field for the frequency response.

♦ Fields

Action:

Object:

Method

Field Name

Active Independent Variables

Non Spatial

Create

Tabular Input

frequency_dependent_load

Frequency (f)

[Options...]

Maximum Number of f

OK

Input Data...

2

Enter the *Time/Frequency Scalar Table Data* form with the data below.

MSC.Nastran 102 Exercise Workbook 6-9

7. Create the frequency dependent unit force.

♦ Loads/BCs

Action:	Create
Object:	Pressure
Type:	Element Uniform
New Set Name	pressure

Target Element Type:

Input Data...

Top Surf Pressure

* Time/Freq. Dependence (Select from the **Time Dependent Fields** box.)

OK

Select Application Region...

FEM

Select 2D Elements or Edge:

Elem 1:40

Create

Force

Nodal

<0, 0 , 1>

force

f:frequency_dependent_load

2D

-0.1

Add	
ОК	
Apply	

8. Create forces.

♦ Load/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Force <*F1 F2 F3*>

* Time/Freq. Dependence: (Select from the **Time Dependent Fields** box.)

MSC.Nastran 102 Exercise Workbook

OK

f:frequency_dependent_load

WORKSHOP 6 Modal Frequency Response Analysis

Select Application Region...

FEM

Select Nodes

Node	11	

Add	
OK	
Apply	

To better visualize the model, hide the labels using the following toolbar icon:

Action:

Plot Markers

Under Assigned Load/BC Sets, highlight:

Displ_spc1.1

Press_pressure

Force_force

Under Select Groups, highlight:

default_group

The model should be similar to Figure 6.2.

Figure 6.2

In order to make the next step easier, turn the entity labels back on.

Show Labels

9. Now you are ready to generate an input file for analysis

Click on the **Analysis** radio button on the Top Menu Bar and complete the entries as shown here.

Modal Frequency Response Analysis WORKSHOP 6

Solution Type:	◆ FREQUEN
Formulation:	Modal
Solution Parameters	
Mass Calculation:	Coupled
WtMass Conversion =	0.00259
Eigenvalue Extraction	
Frequency Range of Interest:	
Lower =	10.
Upper =	2000.
ОК	
OK	

Subcase Create...

Available Subcases

Subcase Parameters...

DEFINE FREQUENCIES...

Add Row

OK

.

	Incr. Type	Start Freq.	End Freq.	No. Incr.	Cluster/Spread
1	Linear	20	1000	49	Not Used
2	Linear	20	1000	5	Not Used

OK

Modal Damping

Crit. Damp. (CRIT)

DEFINE MODAL DAMPING

Add Row

MSC.Nastran 102 Exercise Workbook 6-13

CY RESPONSE

10.	
2000.	

frequency_dependent

1 0 .03		Frequency	Value
	1	0	.03
2 10 .03	2	10	.03

ОК]
OK]
Output Req	uests

Under Output Requests, highlight:

OK Apply Cancel Subcase Select Subcases Selected: (Click to de-select.)	
Apply Cancel Subcase Select Subcases Selected: (Click to de-select.)	
Cancel Subcase Select Subcases Selected: (Click to de-select.)	
Subcase Select Subcases Selected: (Click to de-select.)	
Subcases Selected: (Click to de-select.) Default	
Subcases for Solution Sequence: frequency_depend	
111	ent

NOTE: Not so Fast!! Before submitting the job, we still need to define the phase lead.

An input file called **prob6.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green.

10. However, since the phase lead term in the equation of the dynamic loading function (DPHASE) is currently not supported by PATRAN, you will need to manually edit the file, **prob6.bdf**, to insert the appropriate phase for the point load.

Search for:

RLOAD1 8 9

MSC.Nastran 102 Exercise Workbook

WORKSHOP 6 Modal Frequency Response Analysis

Insert the identification number of the DPHASE entry in the 5th field. The revised RLOAD1 card should look as follows;

RLOAD1 8 9 92 1

Also, insert the necessary DPHASE card;

DPHASE 92 11 3 -45.

(NOTE: The placement of the numbers must fit the within the alloted 8 character "cell" widths)

MSC.Patran users should now proceed to Step 12.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from pages 6-3 (general model description). The result should be similar to the output below.

11. MSC.Nastran input file: prob6.dat.

```
ID SEMINAR, PROB6
SOL 111
TIME 30
CEND
TITLE = FREQUENCY RESPONSE WITH PRESSURE AND POINT LOADS
SUBTITLE = USING THE MODAL METHOD WITH LANCZOS
ECHO = UNSORTED
SEALL = ALL
SPC = 1
SET 111 = 11, 33, 55
DISPLACEMENT(PHASE, PLOT) = 111
METHOD = 100
FREQUENCY = 100
SDAMPING = 100
SUBCASE 1
DLOAD = 100
LOADSET = 100
$
OUTPUT (XYPLOT)
$
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
YBLOG= NO
XTITLE= FREQUENCY (HZ)
YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, PHASE
XYPLOT DISP RESPONSE / 11 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, PHASE
XYPLOT DISP RESPONSE / 33 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, PHASE
```

MSC.Nastran 102 Exercise Workbook

6-16

WORKSHOP 6 Modal Frequency Response Analysis

```
XYPLOT DISP RESPONSE / 55 (T3RM, T3IP)
$
BEGIN BULK
$
$ PARAMETERS FOR POST-PROCESSING
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
$
$ EIGENVALUE EXTRACTION PARAMETERS
$
EIGRL, 100, 10., 2000.
$
$ SPECIFY MODAL DAMPING
$
TABDMP1, 100, CRIT,
+, 0., .03, 10., .03, ENDT
$
$ APPLY UNIT PRESSURE LOAD TO PLATE
$
LSEQ, 100, 300, 400
$
PLOAD2, 400, 1., 1, THRU, 40
$
$ APPLY PRESSURE LOAD
$
RLOAD2, 400, 300, , ,310
$
TABLED1, 310,
, 10., 1., 1000., 1., ENDT
$
$ POINT LOAD
$
$ IF 'DAREA' CARDS ARE REFERENCED, THEN
$ 'DPHASE' AND 'DELAY' CAN BE USED
$
RLOAD2, 500, 600, , 320, 310
$
DPHASE, 320, 11, 3, -45.
$
```

\$
DAREA, 600, 11, 3, 1.0
\$
DAREA, 600, 11, 3, 1.0
\$
COMBINE LOADS
\$
DLOAD, 100, 1., .1, 400, 1.0, 500
\$
DLOAD, 100, 1., .1, 400, 1.0, 500
\$
FREQ1, 100, 20., 20., 49
FREQ1, 100, 20., 1000., .03, 5
\$
ENDDATA

Submitting the input file for analysis:

- 12. Submit the input file to MSC.Nastran for analysis.
- 12a.To submit the MSC.Patran **.bdf** file, find an available UNIX shell window. At the command prompt enter **nastran prob6.bdf** scr=yes. Monitor the run using the UNIX **ps** command.
- 12b.To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter nastran prob6 scr=yes. Monitor the run using the UNIX ps command.
 - 13. When the run is completed, use **plotps** utility to create a postscript file, **prob6.ps**, from the binary plot file **prob6.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 6.2 to 6.4.
 - 14. When the run is completed, edit the **prob6.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

For MSC.Nastran users only. MSC.Patran users should skip to step 16.

15. While still editing **prob6.f06**, search for the word:

XY-OUTPUT SUMMARY (spaces are necessary).

Displacement at Grid 11

Frequency (X)	Displacement (Y)
140 =	
440 =	
Displacement at C	Grid 33
Frequency (X)	Displacement (Y)
140 =	
660 =	
Displacement at C	Grid 55
Frequency (X)	Displacement (Y)
140 =	
1000 =	

Comparison of Results

16. Compare the results obtained Ħ. the .f06 file with the following

results:

X FOR YMAX 2.000000E+01 1.000000E+03 3.481836E-04 4.400000E+02 1.699121E-01 1.336996E+0 2.000000E+01 1.000000E+03 3.481836E-04 4.400000E+02 1.699121E-01 1.336996E+0 11(--, 11) 2.000000E+01 1.000000E+03 1.390213E+02 1.000000E+03 3.258276E+02 2.000000E+0 2.000000E+01 1.000000E+03 1.390213E+02 1.000000E+03 3.258276E+02 2.000000E+0 33(5,--) 2.000000E+01 1.000000E+03 2.271459E-04 6.600000E+02 1.700317E-01 1.336996E+0 2.000000E+01 1.000000E+03 2.271459E-04 6.600000E+02 1.700317E-01 1.336996E+0 2.000000E+01 1.000000E+03 1.385571E+02 1.000000E+03 3.263339E+02 2.000000E+0 2.000000E+01 1.000000E+03 1.385571E+02 1.000000E+03 3.263339E+02 2.000000E+0 2.000000E+01 1.000000E+03 1.278678E-04 1.000000E+03 1.696787E-01 1.336996E+0 2.000000E+01 1.000000E+03 1.278678E-04 1.000000E+03 1.696787E-01 1.336996E+0 55(--, 11) 2.000000E+01 1.000000E+03 1.687413E+01 7.001384E+02 3.573561E+02 7.104853E+0 2.000000E+01 1.000000E+03 1.687413E+01 7.001384E+02 3.573561E+02 7.104853E+0

YMAX-FRAME/

ALL DATA

REAL

XMAX-FRAME/

ALL DATA

XY-OUTPUT SUMMARY (RESPONSE)

XMIN-FRAME/

ALL DATA

EIGENVALUES

ALL DATA

X FOR

YMIN

YMIN-FRAME/

MSC.Nastran 102 Exercise Workbook 6-21

SUBCASE

ID

1 DISP

1 DISP

1 DISP

1 DISP

1 DISP

1 DISP

CURVE FRAME

1

1

2

2

3

3

NO. CURVE ID.

11(5,--)

33(--, 11)

55(5,--)

TYPE

- 17. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.
 - 18. Proceed with the Reverse Translation process, that is attaching the **prob6.xdb** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows.

♦ Analysis

Action:

Object:

Method

Attach XDB
Result Entities
Local

Select Results File...

Select File

OK Apply prob6.xdb

19. Plot the results in XY Plots.

The first plot is the Displacement versus Frequency plot at Node 11.

♦ Results

Action:

Object:

Select Results Cases

Filter Method

Select y Result:

Quanity:

x:

Variable:

Plot Options

Graph			
Frequency_	depender	nt_0 of 54 si	ubcase
All			

Z Component

Frequency

Global Variable

MSC.Nastran 102 Exercise Workbook
Complex No. as:	Magnitude
Display Attributes	
y axis scale	Log
Target Entities	
Select Nodes:	Node 11
Apply	

Figure 6.3-Displacement Response at Loaded Corner

The second plot is the Displacement versus Frequency at Node 33..

Node 33

трріз

Figure 6.4-Displacement Response at Tip Center

WORKSHOP 6 Modal Frequency Response Analysis

The third plot is the Displacement versus Frequency at Node 55.

Select Nodes:
Apply

Figure 6.5-Displacement Response at Opposite Corner

Quit MSC.Patran when you have completed this exercise.

MSC.Nastran 102 Exercise Workbook

WORKSHOP 7

Direct Transient Response with Base Excitation

Objectives

- Define a time-varying unit acceleration.
- Use the large mass method.
- Produce a MSC.Nastran input file from a dynamic math model, created in Workshop 1.
- Submit the file for analysis in MSC.Nastran.
- Compute nodal displacements for desired time domain.

MSC.Nastran 102 Exercise Workbook

Model Description:

Using the direct method, determine the transient response to a unit acceleration sine pulse of 250 Hz applied at the base in the z direction. A large mass of 1000 lb is applied to the base. Use a structural damping coefficient of g = 0.06 and convert this damping to equivalent viscous damping at 250 Hz.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 7.1-Loads and Boundary Conditions

Suggested Exercise Steps

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Modify base constraints and release displacements in the Z-direction.
- Define the time-varying unit acceleration (TLOAD2 and DAREA).
- Create the large mass at the base (CMASS2 and RBE2).
- Specify the structural damping and convert this damping to equivalent viscous damping.
 - PARAM, G, 0.06
 - PARAM, W3, 1571
- Specify integration time steps (TSTEP).
- Prepare the model for a direct transient analysis (SOL 109).
- Request response in terms of nodal displacement, velocity and acceleration at Grids 11, 33 and 55.
- Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis.
- Review the results, specifically the nodal displacements, velocities, and acceleration.

ID SEMINAR, PROB7

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 11, otherwise, proceed to step 2.
- 2. Create a new database and named **prob7.db**

File/New Database

New Database Name

prob7

OK

In the *New Model Preference* form set the following:

Tolerance

OK

Analysis code:

•	Default	

iarysis coue.

MSC/NASTRAN

3. Create the model by importing an existing MSC.Nastran input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method:

Model Data Translate

Read Input File

plate.bdf

Select	Input	File
--------	-------	------

Select Input File

OK	
Apply	
ОК	

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Create a time dependent load case for the transient response..

♦ Load Cases

Action:

Load Case Name:

Load Case Type:

Create
transient_response
Time Dependent

Displ_spc1.1

Select Individual Load/BCs (Select from menu.)

Assign/Prioritize Loads/BCs

OK Apply

6. Place the large mass at the base. To do this, it will be necessary to create a point element at Node 23.

♦ Finite Elements	
Action:	Create
Object:	Element
Method:	Edit
Shape:	Point
<i>Node 1</i> =	Node 23
Apply	
Next define the scalar mass	

7. Next, define the scalar mass.

Input Properties...

Mass

DOF at Node 1

(Select String (UZ) from the button on the right.)

OK

Select Members:

(Change the select menu from point to point element, then select the point element which was previously created.)

Add	
Apply	

8. Create the RBE2, which will connect the mass to the remaining base points.

♦ Finite Elements

Action:

Object:

Type:

Define Terms ...

(Turn off Auto Execute.)

♦ Create Independent

Node List:

Apply

Create	
MPC	
RBE2	

Auto Execute

Node 23

Create Dependent

Node List:

7-10

Node 1, 12, 34, 45

MSC.Nastran 102 Exercise Workbook

Elm 41

DOFs	UZ
Apply	
Cancel	
Apply	

9. Create the time-dependent field for the unit acceleration.

♦ Fields

Action:

Object:

Method:

Field Name:

Time (t)

Options ...

Maximum Number of t:

Create

Non Spatial

Tabular Input

time_dependent_acceleration

|--|

OK

Input Data ...

Map Function to Table...

PCL Expression f'(t):

Start time:

End time:

Number of Points:

Apply Cancel sind(360.*250.*'t)
0.0
0.004
20

Go back to the *Time/Frequency Scalar Table Data* window. Add the following to row 21:

7-11

Apply

9a. Now define the unit acceleration.

♦ Loads/BCs

Action:

Object:

OK

♦ FEM

New Set Name:

Input Data...

Spatial Dependence:

Time/Freq. Dependence:

Select Application Region ...

Create Force

unit_acceleration

<0, 0, 2.588>

f:time_dependent_acceleration

Node 23

Add	
OK	
Apply	

9b. Finally, modify the existing constrants by releasing DOF3.

◆ Load/BCs

Action: Object:

Type:

Displacement Nodal

Modify

spc1.1

Modify Data...

Select Set to Modify

 $Translations < T1 \ T2 \ T3 >$

Rotations < R1 R2 R3 >

OK

< 0, 0, > < 0, 0, >

MSC.Nastran 102 Exercise Workbook

WORKSHOP 7 Direct Transient Response Analysis

9c. The result should look like Figure 7.2

Figure 7.2

10. Generate the input file.

under *Select Result Type*, highlight:

Velocities Accelerations

under Output Requests, highlight:

SPCFORCES(SORT1,Real)=ALL FEM

WORKSHOP 7 Direct Transient Response Analysis

Subcases Selected: (Click to deselect.)	Default		
Subcases for Solution Sequence: 109 (Click to select.)	transient_response		
ОК			
Apply			

An MSC.Nastran input file called **prob7.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 12.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data previously stated. The result should be similar to the output below.

11. MSC.Nastran Input File: prob7.dat

```
ID SEMINAR, PROB7
SOL 109
TIME 30
CEND
TITLE = TRANSIENT RESPONSE WITH BASE EXCITATION
SUBTITLE = USING DIRECT TRANSIENT METHOD, NO REDUCTION
ECHO = UNSORTED
SPC = 200
SET 111 = 23, 33
DISPLACEMENT (SORT2) = 111
VELOCITY (SORT2) = 111
ACCELERATION (SORT2) = 111
SUBCASE 1
DLOAD = 500
TSTEP = 100
$
OUTPUT (XYPLOT)
XGRID=YES
YGRID=YES
XTITLE= TIME (SEC)
YTITLE= BASE ACCELERATION
XYPLOT ACCELERATION RESPONSE / 23 (T3)
YTITLE= BASE DISPLACEMENT
XYPLOT DISP RESPONSE / 23 (T3)
YTITLE= TIP CENTER DISPLACEMENT RESPONSE
XYPLOT DISP RESPONSE / 33 (T3)
$
BEGIN BULK
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ SPECIFY STRUCTURAL DAMPING
$
PARAM, G, 0.06
```

WORKSHOP 7 Direct Transient Response Analysis

```
PARAM, W3, 1571.
$
$ APPLY EDGE CONSTRAINTS
$
SPC1, 200, 12456, 1, 12, 23, 34, 45
$
$ PLACE BIG FOUNDATION MASS (BFM) AT BASE
$
CMASS2, 100, 1000., 23, 3
$
$ RBE MASS TO REMAINING BASE POINTS
$
RBE2, 101, 23, 3, 1, 12, 34, 45
$
$ APPLY LOADING TO FOUNDATION MASS
$
TLOAD2, 500, 600, , 0, 0.0, 0.004, 250., -90.
$
DAREA, 600, 23, 3, 2.588
$
$ SPECIFY INTEGRATION TIME STEPS
$
TSTEP, 100, 200, 2.0E-4, 1
$
ENDDATA
```

Submitting the input file for analysis:

12. Submit the input file to MSC.Nastran for analysis.

12a.To submit the MSC.Patran **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob7.bdf scr=yes**. Monitor the run using the UNIX **ps** command.

12b.To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob7 scr=yes. Monitor the run using the UNIX ps command.

- 13. When the run is completed, use **plotps** utility to create a postscript file, **prob7.ps**, from the binary plot file **prob7.plt**. The displacement, velocity, and acceleration response plots for Grids 11, 33 and 55 are shown in figures 7.3 to 7.8.
- 14. When the run is completed, edit the **prob7.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

15. While still editing prob7.f06 , search for the word:
DISPL (spaces are necessary)
Displacement at Grid 23
Time T3
.0 =
.02 =
.04 =
Displacement at Grid 33
Time T3
.0 =
.02 =
.04 =
V E L O C (spaces are necessary)
Velocity at Grid 23
Time T3
.0 =
.02 =
.04 =
Velocity at Grid 33
Time T3
.0 =
.02 =
.04 =

MSC.Nastran 102 Exercise Workbook

			DISP	LACEMENT	VECTOR	
TIME	TYPE	Т1	Т2	Т3	Rl	R2
.0	G	.0	.0	.0	.0	.0
1.999998E-02	G	.0	.0	2.511800E-06	.0	.0
3.999996E-02	G	. 0	. 0	2.523053E-06	.0	. 0
POINT-ID =	33					
101111 12			DISP	LACEMENT	VECTOR	
TIME	TYPE	T1	Т2	Т3	Rl	R2
.0	G	.0	.0	.0	.0	.0
1.999998E-02	G	.0	.0	4.559710E-06	7.870200E-20	-5.699044E-07
3.999996E-02	G	.0	.0	7.363514E-07	-8.475326E-19	4.972196E-07
POINT-ID =	23					
			VEL	OCITY VE	CTOR	
TIME	TYPE	т1	Т2	Т3	R1	R2
.0	G	.0	.0	1.029922E-05	.0	.0
1.999998E-02	G	.0	.0	4.035838E-07	.0	.0
3.999996E-02	G	.0	.0	4.712748E-07	.0	.0
POINT-ID =	33					
			VEL	OCITY VE	CTOR	
TIME	TYPE	T1	Т2	Т3	R1	R2
.0	G	.0	.0	-4.379307E-07	1.492096E-20	-1.481305E-07
1.999998E-02	G	.0	.0	1.220225E-03	-2.594927E-15	-3.394969E-04
3.999996E-02	G	.0	.0	6.578242E-04	3.797481E-15	-1.829342E-04
POINT-ID =	23					
			ACCEL	ERATION	VECTOR	
TIME	TYPE	T1	Т2	Т3	R1	R2
.0	G	.0	.0	1.029922E-01	.0	.0
1.999998E-02	G	.0	.0	1.615566E-04	.0	.0
3.999996E-02	G	.0	.0	-1.353748E-04	.0	.0
POINT-ID =	33					
			ACCEL	ERATION	VECTOR	
TIME	TYPE	T1	Т2	Т3	R1	R2
.0	G	.0	.0	-4.379307E-03	1.492096E-16	-1.481305E-03
1.999998E-02	G	.0	.0	-1.464230E+00	-1.464654E-11	4.074106E-01
3.999996E-02	G	.0	.0	1.231636E+00	1.381082E-11	-3.427888E-01

23

POINT-ID =

WORKSHOP 7

Comparison of Results

16. Compare the results obtained in the **.f06** file with the following results:

17. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

18. Proceed with the Reverse Translation process, that is attaching the **prob7.xdb** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis	
Action:	Attach XDB
Object:	Result Entities
Method:	Local
Select Results File]
Select Results File	prob7.xdb
ОК	
Apply	

When the translation is complete bring up the form.

WORKSHOP 7 Direct Transient Response Analysis

Select Nodes:

Node 23

Apply

The output should look similar to Figure 7.3

	Base Displacement At Node 23
.00000270	
.00000225	-
.00000180	-
.00000135	-
000000900	-
000000450	-
0.	a00700 .0140 .0210 .0290 .0350 .0420

19. Repeat the procedure to find the nodal displacement for Node 33.

Select Nodes:

Apply

Figure 7.4-Tip Displacement at Node 33

20. Repeat the procedure to find the nodal velocity for Node 23.

Select Results

Figure 7.5-Base Velocity at Node 23

21. Repeat the procedure to find the velocity at Node 33.

Select Nodes:

Node 33

Apply

Figure 7.6-Tip Velocity at Node 33

22. Repeat the procedure to find the nodal acceleration for Node 23.

Select Results

Figure 7.7-Base Acceleration at Node 23

23. Repeat the procedure to find the acceleration at Node 33.

Select Nodes:

Node 33

Apply

Figure 7.8-<u>Tip Acceleration at Node 33</u>

Quit MSC.Patran when you are finished with this exercise.

WORKSHOP 8

Enforced Motion with Direct Frequency Response

Objectives

- Define frequency-varying tip displacement.
- Use the large mass method.
- Produce a MSC.Nastran input file from a dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC.Nastran.
- Compute nodal displacements for desired time domain.

MSC.Nastran 102 Exercise Workbook

WORKSHOP 8 Enforced Motion with Direct Frequency Response

Model Description:

Using the direct method, determine the frequency response of the flat rectangular plate, created in Workshop 1, under a 0.1 displacement at a corner of the tip. Use a frequency step of 20 Hz in the range of 20 to 1000 Hz. Use a structural damping of g = 0.06.

Below is a finite element representation of the flate plate. It also contains the loads and boundary constraints.

Figure 8.1-Loads and Boundary Conditions

Suggested Exercise Steps

- Reference previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Create the large mass at a corner of the tip (CMASS2).
- Define the frequency-varying tip displacement (RLOAD2, TABLED4, DAREA).
- Define a set of frequencies to be used in the solution (FREQ1).
- Prepare the model for a direct frequency analysis (SOL 108).
- Sprecify the structural damping.
 - PARAM, G, 0.06
- Request response in terms of nodal displacement and grid points 11, 33, and 55.
- Generate an input file, and submit it to the MSC.Nastran solver for direct transient analysis.
- Review the results, specifically the grid displacements.
ID SEMINAR, PROB8

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 9, otherwise, proceed to step 2.
- 2. Create a new database and named **prob8.db**.

File/New Database

New Database Name

prob8

OK

In the New Model Preference form set the following:

Tolerance

Analysis code:

♦ Default

MSC/NASTRAN

OK

3. Create the model by importing an existing MSC.Nastran input file, (plate.bdf).

♦ Analysis

Action:

Object:

Method:

Model Data	
Translate	

Read Input File

plate.bdf

Select Input File

Select Input File

OK	
Apply	
OK	

4. Activate the entity labels by selecting the Show Labels icon on the toolbar.

5. Create the frequency dependent load case.

♦ Load Cases

Action:CreateLoad Case Name:frequency_responseLoad Case Type:Time DependentAssign/Prioritize Loads/BCsSelect Individual Load/BCs
(Select from menu.)OKDispl_spc1.1

6. Place a large mass at a corner of the tip (Node 11). However, a point element must be created first.

♦ Finite Element

Apply

Action: Object: Method: Shape: Node 1 =

Create	
Element	
Edit	
Point	
Node 11	

Apply

7. Then define the scalar mass.

Properties

Action:CrDimension:0DType:MaProperty Set Name:ScalaOption(s):Ground

Input Properties ...

Create 0D Mass scalar_mass Grounded Mass:

1.0E+5 UZ

Dof at Node 1 (Value Type)

OK

Select Members: (Click on point element in select menu. Then select Elm 41.)

Elm 41	
--------	--

Add	
Apply	

8. Start the analysis.

♦ Analysis

Action:

Object:

Method:

Jobname:

Translation Parameters...

Data Output:

OK

Solution Type...

Solution Type:

Formulation:

Solution Parameters ...

Mass Calculation

Wt.-Mass Conversion

Structure Damping Coeff:

OK

Analyze

Entire Model
Analysis Deck

prob8

XDB and Print

◆ FREQUENCY RESPONSE

Direct

Coupled	
.00259	
0.06	

Delete	
ОК	
Apply	
Cancel	

Subcases Selected: click on	Default
Subcases for Solution	
Sequence: 108 click on	frequency_response
ОК	
Apply	

An MSC.Nastran input file called **prob8.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 10.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data previously stated. The result should be similar to the output below.

9. MSC.Nastran input file: prob8.dat

```
ID SEMINAR, PROB8
SOL 108
TIME 30
CEND
TITLE= FREQUENCY RESPONSE DUE TO .1 DISPLACEMENT AT TIP
SUBTITLE= DIRECT METHOD
ECHO= UNSORTED
SPC= 1
SET 111= 11, 33, 55
DISPLACEMENT(PHASE, SORT2) = 111
SDISP(PHASE, SORT2) = ALL
set 222 = 11
OLOAD = 222
SUBCASE 1
DLOAD= 500
FREQUENCY= 100
Ŝ
OUTPUT (XYPLOT)
$
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
YBLOG= NO
XTITLE= FREQUENCY (HZ)
YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, PHASE
XYPLOT DISP RESPONSE / 11 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, PHASE
XYPLOT DISP RESPONSE / 33 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, PHASE
XYPLOT DISP RESPONSE / 55 (T3RM, T3IP)
Ś
BEGIN BULK
$
```

```
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ SPECIFY STRUCTURAL DAMPING
$
PARAM, G, 0.06
$
$ APPLY UNIT DISPLACEMENT AT TIP POINT
$
CMASS2, 5000, 1.0E+5, 11, 3
$
RLOAD2, 500, 600, , ,310
$
TABLED4, 310, 0., 1., 0., 10000.,
 ,0., 0., -39.4784, ENDT
$
DAREA, 600, 11, 3, 25.8799
$
$ SPECIFY FREQUENCY STEPS
$
FREQ1, 100, 20., 20., 49
$
ENDDATA
```

Submitting the input file for analysis:

- 10. Submit the input file to MSC.Nastran for analysis.
 - 10a. To submit the MSC.Patran .bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob8.bdf scr=yes. Monitor the run using the UNIX ps command.
 - 10b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob8 scr=yes. Monitor the run using the UNIX ps command.
- 11. When the run is completed, use **plotps** utility to create a postscript file, **prob8.ps**, from the binary plot file **prob8.plt**. The displacement response plots for Grids 11, 33 and 55 are shown in figures 8.2 to 8.7.
- 12. Edit the **prob8.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

13. While still editing **prob8.f06**, search for the word:

XY-OUTPUT SUMMARY (spaces are necessary).

Displacement at Grid 11

Frequency (X) Displacement (Y)

140 = _____

380 = _____

Displacement at Grid 33

Frequency (X) Displacement (Y)

140 = _____

600 = _____

Displacement at Grid 55

Frequency (X) Displacement (Y)

140 = _____

1000 = _____

Comparison of Results

14. Compare the results obtained in the **.f06** file with the following results:

			ХҮ	- 0 11 T P 11 T	SUMMAR	Y (RESPO	NSE)		
SUBCASI	E CURVE	FRAME		XMIN-FRAME/	XMAX-FRAME/	YMIN-FRAME/	X FOR	YMAX-FRAME/	X FOR
ID	TYPE	NO.	CURVE ID.	ALL DATA	ALL DATA	ALL DATA	YMIN	ALL DATA	YMAX
1	DISP	1	11(5,)	2.000000E+01	1.00000E+03	9.992202E-02	3.600000E+02	9.992512E-02	2.00000E+0
				2.00000E+01	1.00000E+03	9.992202E-02	3.600000E+02	9.992512E-02	2.00000E+02
1	DISP	1	11(, 11)	2.00000E+01	1.00000E+03	7.680080E-07	1.00000E+03	3.828149E-04	3.800000E+02
				2.000000E+01	1.00000E+03	7.680080E-07	1.00000E+03	3.828149E-04	3.800000E+02
1	DISP	2	33(5,)	2.00000E+01	1.00000E+03	2.312926E-03	6.00000E+02	8.446401E-01	3.800000E+02
				2.00000E+01	1.00000E+03	2.312926E-03	6.00000E+02	8.446401E-01	3.800000E+02
1	DISP	2	33(, 11)	2.00000E+01	1.00000E+03	3.348117E-01	9.799999E+02	3.599947E+02	2.00000E+01
				2.00000E+01	1.00000E+03	3.348117E-01	9.799999E+02	3.599947E+02	2.00000E+02
1	DISP	3	55(5,)	2.00000E+01	1.00000E+03	2.434351E-02	1.00000E+03	1.624350E+00	3.800000E+02
				2.00000E+01	1.00000E+03	2.434351E-02	1.00000E+03	1.624350E+00	3.800000E+02
1	DISP	3	55(, 11)	2.00000E+01	1.00000E+03	3.690138E+00	1.00000E+03	3.599892E+02	2.00000E+02
				2.000000E+01	1.00000E+03	3.690138E+00	1.00000E+03	3.599892E+02	2.00000E+02

15. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

16. Proceed with the Reverse Translation process, that is attaching the prob8.xdb results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:	Attach XDB
Object:	Result Entities
Method:	Local
Select Results File	
Select Results File	prob8.xdb
ОК	

17. Plot the results in XY plots.

The first plot is to make the Displacement versus Frequency plot at Node 11.

Results

Action:

Object:

Method

Filter

Apply

Close

x:

Apply

Plot Options					
Complex No. as:	Magnitude				
Target Entities					
Select Nodes:	Node 11				
Apply					

Figure 8.2-Displacement Response at Node 11.

The next step is to make the plot of Phase versus Frequency. .

Plot Options

Note the scale on the y axis is in degrees.

Repeat the above steps of plotting the XY plots of Grids 11 for Node 33 and 55.

Plot Options

Complex No as:

Target Entities

Select Nodes:

Apply

Node 33

Figure 8.4-Displacement Response at Node 33

Plot Options

Target Entities

Select Nodes:

Apply

Node 55

Figure 8.6-Displacement Response at Node 55

Plot Options

Complex No as:

Phase

Apply

Quit MSC.Patran when you have completed this exercise.

Model Description:

Define the shock response of the plate due to a 2.0 in/sec^2 sine pulse applied at the clamped edge. Use modes to a frequency of 1000 Hz with 3% critical damping. Use the SRSS option for model response summation.

Suggested Exercise Steps:

- Generate the finite element representation of the model using (GRID) and (CMASS2) elements.
- Apply loading to mass, (TLOAD2) and (DAREA).
- Specify integration time steps (TSTEP).
- Define frequency and damping values for the SDOF oscillators (DTI).
- Specify damping information (FREQ) and natural frequency (FREQ1).
- Define the parameter to calculate shock spectrum.
 - PARAM, RESPECTRA, 0
- Generate an input file and submit it to the MSC.Nastran solver for direct transient analysis.
- Review the results.

ID SEMINAR, PROB9A

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 9a Shock Response Spectrum

1	2	3	4	5	6	7	8	9	10

ENDDATA

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from page 9-3 (Model Description). The result should be similar to the output below.

1. MSC.Nastran input file: prob9a.dat.

```
ID SEMINAR, PROB9a
SOL 109
TIME 30
CEND
TITLE= TRANSIENT RESPONSE
SUBTITLE= USING DIRECT TRANSIENT METHOD
LABEL= SHOCK SPECTRUM CALCULATION
ECHO= UNSORTED
SPC= 100
SET 111= 3000
DISPLACEMENT (SORT2) = 111 $ AT LEAST DISP AND VEL MUST APPEAR
VELOCITY (SORT2) = 111
ACCELERATION () = 111
DLOAD= 500
TSTEP= 100
$
OUTPUT (XYPLOT)
$
$ SHOCK RESPONSE IS ONLY AVAILABLE IN PLOT OR PUNCH OUTPUT. THEREFORE,
$ THE 'OUTPUT(XYPLOT)' SECTION OF THE CASE CONTROL MUST BE USED.
$
XGRID=YES
YGRID=YES
XYPLOT ACCE / 3000(T1)
XLOG= YES
YLOG= YES
$
$ RELATIVE SHOCK RESPONSES ARE CONTAINED IN THE IMAGINARY/PHASE
$ COMPONENTS OF THE OUTPUT
$ ABSOLUTE SHOCK RESPONSES ARE CONTAINED IN THE REAL/MAGNITUDE
$ COMPONENTS OF THE OUTPUT
$
XTITLE= FREQUENCY (CYCLES/SEC)
YTITLE= RELATIVE DISPLACEMENT
XYPLOT DISP SPECTRAL 1 / 3000 (T1IP)
YTITLE= RELATIVE VELOCITY
XYPLOT VELOCITY SPECTRAL 1 / 3000 (T1IP)
YTITLE= ABSOLUTE ACCELERATION
XYPLOT ACCELERATION SPECTRAL 1 / 3000 (T1RM)
$
9a-8
                MSC.Nastran 102 Exercise Workbook
```

WORKSHOP 9a Shock Response Spectrum

\$ PUNCH SHOCK SPECTRUM FOR LATER USE \$ XYPUNCH ACCELERATION SPECTRAL 1 / 3000(T1RM) \$ BEGIN BULK \$ \$ DEFINE GRID POINT \$ GRID, 3000, ,0.,0.,0., ,23456 \$ \$ DEFINE MASS \$ CMASS2, 100, 1.0, 3000, 1 \$ \$ APPLY LOADING TO MASS \$ TLOAD2, 500, 600, , 0, 0., 0.004, 250., -90. \$ DAREA, 600, 3000, 1, 1. Ŝ \$ SPECIFY INTEGRATION TIME STEPS \$ TSTEP, 100, 100, 4.0E-4, 1 \$ \$ PARAMETER TO CALCULATE SHOCK SPECTRUM \$ PARAM, RSPECTRA, 0 \$ \$ SPECIFY FREQUENCY AND DAMPING VALUES FOR \$ THE SDOF OSCILLATORS AT GRID 3000 \$ DTI, SPSEL, O DTI, SPSEL, 1, 111, 222, 3000 \$ 1= SUBCASE... 111= DAMPING... 222= FREQUENCIES... 3000= GRID NUMBER \$ \$ DAMPING INFORMATION FOR OSCILLATORS \$ FREQ, 111, 0., 0.02, 0.04 \$ \$ NATURAL FREQUENCIES OF OSCILLATORS \$ FREQ1, 222, 20., 20., 49 \$ ENDDATA

Submitting the input file:

2. Submit the input file to MSC.Nastran for analysis.

To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter **nastran prob9a scr=yes**. Monitor the run using the UNIX **ps** command.

- 3. When the run is completed, use **plotps** utility to create a postscript file, **prob9a.ps**, from the binary plot file **prob9a.plt**. The nonlinear force and displacement plots are shown on the following pages.
- 4. When the run is completed, edit the **prob9a.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

Comparison of Results

5. Compare the plot made from the exercise with the plots on the following pages.

Figure 9a.2

Figure 9a.4

Model Description:

Define the shock response of the plate due to a 2.0 in/sec^2 sine pulse applied at the clamped edge. Use modes to a frequency of 1000 Hz with 3% critical damping. Use the SRSS option for model response summation.

Suggested Exercise Steps:

- Reference a previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Modify boundary conditions for clamped modes.
- Place big foundation mass (BFM) at base to simulate 'clamped' modes (CMASS2).
- RBE mass to remaining base point (RBE2).
- Identify excitation DOFs (SUPORT).
- Specify damping table (TABDMP1).
- Specify shock spectrum to be used (DLOAD).
- Specify shock tables (DTI).
- Insert punch output for shock spectrum calculation.
- Specify the appropriate parameters.
 - PARAM, SCRSPEC, 0
 - PARAM, OPTION, SRSS
 - PARAM, LFREQ, 0.1
 - PARAM, HFREQ, 1000
- Generate an input file and submit it to the MSC.Nastran solver (SOL103).
- Review the results.

ID SEMINAR, PROB9B

CEND

MSC.Nastran 102 Exercise Workbook

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

MSC.Nastran 102 Exercise Workbook

WORKSHOP 9b Shock Response Spectrum

1	2	3	4	5	6	7	8	9	10

ENDDATA

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from page 9-3 (Model Description). The result should be similar to the output below.

1. MSC.Nastran input file: prob9b.dat.

```
ID SEMINAR, PROB9B
SOL 103
TIME 30
CEND
TITLE= RESPONSE SPECTRUM ANALYSIS
SUBTITLE= USING CALCULATED SHOCK RESPONSE
LABEL= SHOCK WILL BE INPUT IN Z DIRECTION
ECHO= UNSORTED
SET 111= ALL
DISPLACEMENT= 111
SPC= 200
SUBCASE 1
METHOD= 100
SDAMP= 200
DLOAD= 500
$
BEGIN BULK
$
$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
$ BOUNDARY CONDITIONS FOR `CLAMPED' MODES
$
SPC1, 200, 1245, 1, 12, 23, 34, 45
$
$ PLACE BIG FOUNDATION MASS (BFM) AT BASE
$ TO STIMULATE `CLAMPED' MODES
$
CMASS2, 110, 1000., 23, 3
$
$ RBE MASS TO REMAINING BASE POINTS
$
RBE2, 101, 23, 3, 1, 12, 34, 45
```

MSC.Nastran 102 Exercise Workbook

9b-8

WORKSHOP 9b Shock Response Spectrum

```
Ś
$ SUPPORT CARD TO IDENTIFY EXCITATION DOFS
$
SUPORT, 23, 3
$
$ EIGENVALUE EXTRACTION
$ MUST BE MASS NORMALIZED (DEFAULT)
$
EIGR, 100, MGIV, 0., 1000.
Ś
$ TABLE TO SPECIFY DAMPING FOR USE IN THE ANALYSIS
$
TABDMP1, 200, CRIT,
, 0., 0.03, 1000., 0.03, ENDT
$
$ SPECIFICATION OF SHOCK SPECTRUM TO BE USED
$
DLOAD, 500, 1.0, 2.0, 1
Ś
$ DLOAD, ID, OVERALL SCALE, SCALE FOR R-SET DOF# 1, SHOCK TABLE FOR DOF# 1,
$ SCALE FOR R-SET DOF# 2, SHOCK TABLE FOR DOF# 2, ETC.
Ś
$ SELECT SHOCK RESPONSE CALCULATION
$
PARAM, SCRSPEC, 0
$
$ SELECT SUMMATION OPTION
$
PARAM, OPTION, SRSS
Ŝ
$ MODAL FREQUENCY RANGE CAN BE SELECTED USING
PARAM, LFREQ, 0.1
PARAM, HFREQ, 1000.
Ś
$ SPECIFICATION FOR SHOCK TABLES
$
DTI, SPECSEL, 0
DTI, SPECSEL, 1, , A, 2, 0., 3, 0.02,
, 4, 0.04, ENDREC
$
$ DTI, SPECSEL, SHOCK TABLE NUMBER, , [(A)CCELERATION, (V)ELOCITY, OR (D)ISP],
$ TABLED1 POINTER, DAMPING FOR TABLE, ETC.
$
```

\$ PUNCH OUTPUT FOR SHOCK SPECTRUM CALCULATION \$ 3 \$ ACCE 4 3000 1 \$ 0.00000E+00 \$ TABLED1 2 .038683 40. .152539 60. .33511 80. 20. .576059 100. .862049 120. 1.17619 140. 1.50169 160. 1.82018 2.56617 240. 180. 2.11404 200. 2.36801 220. 2.70027 260. 2.76275 280. 2.75073 300. 2.74632 320. 2.61887 340. 2.4218 360. 2.39068 380. 2.24931 400. 2.02296 420. 1.78538 440. 1.70355 460. 1.57056 480. 1.40493 1.17631 560. 1.14097 500. 1.22608 520. 1.20483 540. 1.05582 620. .958761 580. 1.10048 600. 1.00818 640. 660. .908725 680. .859158 700. .827667 720. .782127 740. .728996 760. .694088 780. .668602 800. .635044 820. .598496 840. .571831 860. .563072 880. .550499 900. .528854 920. .509281 940. .500534 960. .498016 980. .488793 1000. .468321 ENDT \$ACCE 4 3000 3 52 2.000000E-02 \$ TABLED1 3 20. .037708 40. .143365 60. .314936 80. .541342 1.10506 140. .80976 120. 100. 1.40671 160. 1.69567 1.98167 200. 2.22217 220. 2.35249 240. 180. 2.53055 260. 2.56231 280. 2.55577 300. 2.58668 320. 2.45921 340. 2.29411 360. 2.25956 380. 2.12901 400. 1.92605 1.68656 440. 1.61355 460. 420. 1.4968 480. 1.35263 1.17707 540. 1.19796 520. 1.14947 560. 500. 1.11613 580. 1.07807 600. 1.03637 620. .992124 640. .946383 .900171 680. 660. .854434 700. .810016 720. .767647 740. .727923 760. .691288 780. .658039 800. .628311 820. .602091 840. .579207 860. .559362 880. .542128 900. .526973 920. .51329 940. .500403 960. .487602 980. .474171 1000. .459408 ENDT 3 103 3000 \$acce 4 4.000000E-02 \$ TABLED1 4 .039336 40. .137673 60. .297382 80. 20. .511244 .764891 120. 1.04406 140. 1.31588 160. 100. 1.58461 1.85678 200. 2.10175 220. 2.19165 240. 180. 2.3921 260. 2.39929 280. 2.42782 300. 2.44263 320. 2.317 340. 2.17923 360. 2.14283 380. 2.0227 400. 1.8407 420. 1.62279 440. 1.53417 460. 1.43168 480. 1.30597 500. 1.17212 520. 1.15165 540. 1.12513 560. 1.09349

580.	1.05768	600.	1.01868	620.	.977462	640.	.934986
660.	.892143	680.	.849752	700.	.808538	720.	.769114
740.	.731968	760.	.69746	780.	.665814	800.	.637115
820.	.611319	840.	.588261	860.	.567655	880.	.549125
900.	.532205	920.	.516369	940.	.501047	960.	.485644
980.	.469568	1000.	.452243	ENDT			

\$

ENDDATA

Submitting the input file for analysis:

2. Submit the input file to MSC.Nastran for analysis.

To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter **nastran prob9b scr=yes**. Monitor the run using the UNIX **ps** command.

3. When the run is completed, edit the **prob9b.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

SUPPO	RT PT.NO. 1	EPSILON 9.5369362E-15	STRAIN ENERGY 2.2118911E-09	EPSILONS LARGER T	HAN 0.001 ARE FI	AGGED WITH ASTI	mo
RESP	ONSE SPECTRU	M ANALYSIS		JULY 5, 1997	MSC.Nastran	1/23/97 PAGE	ַק
USI	NG CALCULATE	D SHOCK RESPONSE					P 4.
SHOCK W	ILL BE INPUT :	IN Z DIRECTION		SUBCASE 1		-	
** 11085		TON MEGGAGE 4415					
** USER	THE ECTIO	ION MESSAGE 4415, Wing a_get decree	רים מעגע ארמים איני איני	ידעדס אוווז אאפפדפ הס	MITT MACCEC AND		
PFCD	OLLO FOLLO	WING A-SEI DEGREES M ANALVETE	OF FREEDOM HAVE EI	TILL MASSES OK	MGC Nagtran	1/23/97 DACE	
USTI	NG CALCIILATE	D SHOCK RESPONSE		0011 3, 1997	Mbc.Mastran		
SHO	CK WILL BE I	NPUT IN Z DIRECTIO	N			SUB(00	
-						a.	
			REAL E	IGENVALUES			E S
MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALI	
NO.	ORDER				MASS	STIFFNE	Ĕ F
1	101	0.0	0.0	0.0	1.00000E+00	0.0	E S
2	102	7.058213E+05	8.401317E+02	1.337111E+02	1.00000E+00	7.058213E	nec
3	103	1.878432E+07	4.334088E+03	6.897916E+02	1.00000E+00	1.878432E	<u>д</u> .
4	104	2.811620E+07	5.302471E+03	8.439145E+02	1.000000E+00	2.811620E	n t
5	105	1.931709E+08	1.389859E+04	2.212030E+03	0.0	0.0	he
6	1	2.234434E+08	1.494802E+04	2.379052E+03	0.0	0.0	÷,
.7	106	2.328846E+08	1.526056E+04	2.428793E+03	0.0	0.0	6
8	107	6.845925E+U8	2.616472E+04	4.164244E+U3	0.0	0.0	fi
9 10	100	9.0UZ3IUE+U8 1.26E612E+00	3.U98/59E+U4	4.931829E+U3 E 991441E+03	0.0	0.0	e
		1.3030125+09 MFGGACF 9047 (DOG	U4+10±+04-0 זס הקוגייט – (בדקיד	U.00144154U3 I GONGE GDECTER	U.U PECIDIAL CUPIC	U.U PF ONLY	Wi
REGDU	MOR SDECTRIM	ANALVALA	INDIG) - SCADED KI	TIII.V 5 100	7 MSC Nagtran	1/23/97 סאכו	th
USTI	NG CALCULATE	D SHOCK RESPONSE			, mascrall	1/23/27 FAG	the
SHO	CK WILL BE I	NPUT IN Z DIRECTIO	N			SUB	e n
MA	TRIX FN	(GINO NAME 101)	IS A DB PREC	1 COLUMN X	3 ROW RECTA	NG MATRIX.	esı
OLUMN	1 R	OWS 1 THRU	3				ıltı
OW							s
1)	1.3371115	00777D+02 6.89791	8198043D+02 8.4391	47827213D+02			'n
HE NUMB	ER OF NON-ZE	RO TERMS IN THE DE	NSEST COLUMN =	3			the
HE DENS	TTY OF THIS	MATRIX IS 100.00 P	ERCENT.				

9b-13

JULY 5, 1997 MSC.Nastran 1/23/97 PAGE RESPONSE SPECTRUM ANALYSIS USING CALCULATED SHOCK RESPONSE SHOCK WILL BE INPUT IN Z DIRECTION SUBCAS PSIT POINT VALUE POINT VALUE POINT VALUE POINT VALUE POINT VALU COLUMN 1 23 T3 -2.11560E-02 COLUMN 2 23 T3 -4.40398E-16 COLUMN 3 23 T3 1.18599E-02 RESPONSE SPECTRUM ANALYSIS JULY 5, 1997 MSC.Nastran 1/23/97 PAGE USING CALCULATED SHOCK RESPONSE SHOCK WILL BE INPUT IN Z DIRECTION SUBCAS USET DEFINITION TABLE (INTERNAL SEQUENCE, ROW SOR R DISPLACEMENT SET -1- -2- -3--4- -5- -6--7- -8- -9- -1= 23-3 SCALED SPECTRAL RESPONSE, SRSS OPTION, DLOAD = 500 CLOSE = 1.00 RESPONSE SPECTRUM ANALYSIS JULY 5, 1997 MSC.Nastran 1/23/97 PAGE USING CALCULATED SHOCK RESPONSE SHOCK WILL BE INPUT IN Z DIRECTION SUBCAS 3 ROW SQUARE MATRIX. MATRIX UHVR (GINO NAME 101) IS A REAL 3 COLUMN X 1 ROWS 1 THRU COLUMN 3 ------ROW 7.6201E-08 0.0000E+00 4.8912E-10 1) 2 ROWS 1 THRU 3 ----COLUMN _____ ROW 6.4019E-05 0.0000E+00 2.5935E-06 1) 3 ROWS 1 THRU 3 -----COLUMN ROW 1) 5.3784E-02 0.0000E+00 1.3752E-02 THE NUMBER OF NON-ZERO TERMS IN THE DENSEST COLUMN = 2 THE DENSITY OF THIS MATRIX IS 66.67 PERCENT. RESPONSE SPECTRUM ANALYSIS JULY 5, 1997 MSC.Nastran 1/23/97 PAGE

9b-14

USING CALCULATED SHOCK RESPONSE SHOCK WILL BE INPUT IN Z DIRECTION TIME = 0.000000E+00

DISPLACEMENT VECTOR

POINT ID.	TYPE	Т1	Т2	Т3	R1	R2	R3
1	G	0.0	0.0	6.222643E-10	0.0	0.0	0.0
2	G	0.0	0.0	7.374101E-08	8.308994E-08	3.059527E-07	0.0
3	G	0.0	0.0	3.173752E-07	1.214202E-07	6.616859E-07	0.0
4	G	0.0	0.0	7.194814E-07	1.167081E-07	9.376687E-07	0.0
5	G	0.0	0.0	1.246589E-06	1.039592E-07	1.160147E-06	0.0
6	G	0.0	0.0	1.870825E-06	8.258849E-08	1.326412E-06	0.0
7	G	0.0	0.0	2.565942E-06	6.149954E-08	1.444516E-06	0.0
8	G	0.0	0.0	3.308983E-06	4.203442E-08	1.519611E-06	0.0
9	G	0.0	0.0	4.080410E-06	2.671514E-08	1.559985E-06	0.0
10	G	0.0	0.0	4.865109E-06	1.691765E-08	1.575028E-06	0.0
11	G	0.0	0.0	5.653596E-06	1.301237E-08	1.577945E-06	0.0
12	G	0.0	0.0	6.222643E-10	0.0	0.0	0.0
13	G	0.0	0.0	9.569825E-08	1.430303E-08	3.703413E-07	0.0
14	G	0.0	0.0	3.577567E-07	4.357941E-08	6.684602E-07	0.0
15	G	0.0	0.0	7.614155E-07	5.321706E-08	9.362424E-07	0.0
16	G	0.0	0.0	1.284521E-06	4.871796E-08	1.147647E-06	0.0
17	G	0.0	0.0	1.901587E-06	4.101944E-08	1.312728E-06	0.0
18	G	0.0	0.0	2.589113E-06	3.141624E-08	1.430590E-06	0.0
19	G	0.0	0.0	3.325147E-06	2.263403E-08	1.507938E-06	0.0
20	G	0.0	0.0	4.091029E-06	1.555984E-08	1.551409E-06	0.0
21	G	0.0	0.0	4.872190E-06	1.101371E-08	1.570698E-06	0.0
22	G	0.0	0.0	5.659176E-06	8.953050E-09	1.576591E-06	0.0
23	G	0.0	0.0	6.222643E-10	0.0	0.0	0.0
24	G	0.0	0.0	9.883527E-08	0.0	3.798185E-07	0.0
25	G	0.0	0.0	3.680177E-07	0.0	6.836093E-07	0.0
26	G	0.0	0.0	7.745986E-07	0.0	9.334775E-07	0.0
27	G	0.0	0.0	1.296574E-06	0.0	1.145700E-06	0.0
28	G	0.0	0.0	1.911807E-06	0.0	1.307858E-06	0.0
29	G	0.0	0.0	2.596946E-06	0.0	1.426281E-06	0.0
30	G	0.0	0.0	3.330809E-06	0.0	1.503975E-06	0.0

•

MSC.Nastran 102 Exercise Workbook

WORKSHOP 10

Random Analysis

Objectives:

- Define a frequency-varying excitation.
- Define load set power spectral density functions.
- Produce a MSC.Nastran input file from a dynamic math model created in Workshop 1.
- Submit the file for random analysis in MSC.Nastran.
- Compute nodal displacements for desired frequency domain.

MSC.Nastran 102 Exercise Workbook

Model Description:

For the plate model, enforce a base motion in the z-direction described by the following power spectral density, (PSD).

Use the modal method with a large mass attached to the edge with an RBE2 entry.

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Determine:

- The response displacement and acceleration PSD at the drive location, (the large mass).
- The displacement PSD at the corner and center of the free edge, (Grids 33 and 55).
- Use modal solution.
- Assume a constant critical damping ratio of 3% across the whole frequency range.

Suggested Exercise Steps:

- Reference a previously created dynamic math model, **plate.bdf**, by using the INCLUDE statement.
- Attach the large mass to the edge of the plate (CONM2 and RBE2).
- Specify modal damping as a tabular function of natural frequency (TABDMP1).
- Define the frequency-varying tip load (DAREA and RLOAD2).
- Define a set of frequencies to be used in the solution (FREQ, FREQ1, and FREQ 4).
- Specify Spectral Density (RANDPS and TABRND1).
- Prepare the model for a direct transient analysis (SOL 111).
- Request acceleration responses at base, tip center, and opposite corner.
- Generate an input file and submit it to the MSC.Nastran solver for direct transient analysis.
- Review the results.

WORKSHOP 10 Random Analysis

ID SEMINAR, PROB10

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 10 Random Analysis

1	2	3	4	5	6	7	8	9	10

ENDDATA

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from pages 10-3 (general model description). The result should be similar to the output below.

1. MSC.Nastran input file: prob10.dat.

```
ID SEMINAR, PROB10
SOL 111
TIME 30
CEND
TITLE= RANDOM ANALYSIS - BASE EXCITATION
SUBTITLE= USING THE MODAL METHOD WITH LANCZOS
ECHO= UNSORTED
SPC= 101
SET 111= 33, 55, 9999
ACCELERATION(SORT2, PHASE) = 111
METHOD= 100
FREQUENCY= 100
SDAMPING= 100
RANDOM= 100
DLOAD= 100
$
OUTPUT(XYPLOT)
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
XTITLE= FREQUENCY
YTTITLE= ACCEL RESPONSE BASE, MAGNITUDE
YBTITLE= ACCEL RESPONSE AT BASE, PHASE
XYPLOT ACCEL RESPONSE / 9999 (T3RM, T3IP)
YTTITLE= ACCEL RESPONSE AT TIP CENTER, MAGNITUDE
YBTITLE= ACCEL RESPONSE AT TIP CENTER, PHASE
XYPLOT ACCEL RESPONSE / 33 (T3RM, T3IP)
YTTITLE= ACCEL RESPONSE AT OPPOSITE CORNER, MAGNITUDE
YBTITLE= ACCEL RESPONSE AT OPPOSITE CORNER, PHASE
XYPLOT ACCEL RESPONSE / 55 (T3RM, T3IP)
$
$ PLOT OUTPUT IS ONLY MEANS OF VIEWING PSD DATA
$
XGRID= YES
YGRID= YES
```

MSC.Nastran 102 Exercise Workbook

WORKSHOP 10 Random Analysis

```
XLOG= YES
YLOG= YES
YTITLE= ACCEL P S D AT LOADED CORNER
XYPLOT ACCEL PSDF / 9999(T3)
YTITLE= ACCEL P S D AT TIP CENTER
XYPLOT ACCEL PSDF / 33(T3)
YTITLE= ACCEL P S D AT OPPOSITE CORNER
XYPLOT ACCEL PSDF / 55(T3)
$
BEGIN BULK
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
$
INCLUDE 'plate.bdf'
$
GRID, 9999, , 0., 0., 0.
$
RBE2, 101, 9999, 12345, 1, 12, 23, 34, 45
$
SPC1, 101, 12456, 9999
$
CONM2, 6000, 9999, , 1.0E8
$
$ EIGENVALUE EXTRACTION PARAMETERS
$
EIGRL, 100 , , 2000.
$
$ SPECIFY MODAL DAMPING
$
TABDMP1, 100, CRIT,
+, 0., .03, 10., .03, ENDT
$
$ POINT LOADING AT TIP CENTER
$
RLOAD2, 100, 600, , , 310
$
TABLED1, 310,
+, 10., 1., 1000., 1., ENDT
$
DAREA, 600, 9999, 3, 1.E8
$
$ SPECIFY FREQUENCY STEPS
$
```

FREQ,100,30.
FREQ1,100,20.,20.,50
FREQ4,100,20.,1000.,.03,5
\$
\$
\$ SPECIFY SPECTRAL DENSITY
\$
RANDPS, 100, 1, 1, 1., 0., 111
\$
TABRND1, 111,LOG,LOG
+, 20., 0.1, 30., 1., 100., 1., 500., .1,
+, 1000., .1, ENDT
\$
ENDDATA

Submitting the input file:

2. Submit the input file to MSC.Nastran for analysis.

To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter **nastran prob10 scr=yes**. Monitor the run using the UNIX **ps** command.

- 3. When the run is completed, use **plotps** utility to create a postscript file, **prob10.ps**, from the binary plot file **prob10.plt**. The nonlinear force and displacement plots are shown on the following pages.
- 4. When the run is completed, edit the **prob10.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.

Comparison of Results

5. Compare the plot made from the exercise with the plots on the following pages.

Figure 10.1

MSC.Nastran 102 Exercise Workbook

MSC.Nastran 102 Exercise Workbook

WORKSHOP 10 Random Analysis

Figure 10.5

WORKSHOP 11

Random Analysis

Objectives:

- Define a frequency-varying excitation.
- Produce a MSC.Nastran input file from a dynamic math model created in Workshop 1.
- Submit the file for analysis in MSC.Nastran.
- Compute nodal displacements for desired frequency domain.

MSC.Nastran 102 Exercise Workbook

Model Description:

Using the modal method, determine the displacement response spectrum of the tip center point due to the input spectrum of the pressure and point loads listed below. Solve using the complex matrix representation [Sab] for the cross spectrum.

Autospectra of Pressu	re Load	Autospectra of Corner Load		
Frequency (Hz)	psi ² /Hz	Frequency (Hz)	lb ² /Hz	
20	0.1	20	0.5	
30	1	30	2.5	
100	1	500	2.5	
500	0.1	1000	0	
1000	0.1			

Table 11.1

Cross-Spectrum of Pressure and Corner Loads Real/ Imaginary							
Frequency (Hz)Real PartImaginary Part							
20	-0.099619	0.007816					
100	-0.498097	0.043579					
500	0.070711	-0.070711					
1000	0	0					

Below is a finite element representation of the flat plate. It also contains the loads and boundary constraints.

Figure 11.1-Loads and Boundary Conditions
Suggested Exercise Steps:

- Reference a previously created dynamic math model, plate.bdf, by using the INCLUDE statement.
- Specify modal damping as a tabular function of natural frequency (TABDMP1).
- Define the frequency-varying pressure loading (PLOAD2, LSEQ and RLOAD2).
- Define the frequency-varying tip load (DAREA and RLOAD2).
- Define a set of frequencies to be used in the solution (FREQ1).
- Specify spectral density (RANDPS and TABRND1).
- Prepare the model for a random analysis (SOL 111).
- Request displacement response at loaded corner, tip center, and opposite corner.
- Generate an input file and submit it to the MSC.Nastran solver for random analysis.
- Review the results, specifically the nodal displacements.

ID SEMINAR, PROB11

CEND

WORKSHOP 11 Random Analysis

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

MSC.Nastran 102 Exercise Workbook 11-7

1	2	3	4	5	6	7	8	9	10

ENDDATA

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from pages 11-3 (general model description). The result should be similar to the output below.

1. MSC.Nastran input file: **prob11.dat**.

```
ID SEMINAR, PROB11
SOL 111
TIME 30
CEND
TITLE= FREQUENCY RESPONSE WITH PRESSURE AND POINT LOADS
SUBTITLE= USING THE MODAL METHOD WITH LANCZOS
ECHO= UNSORTED
SPC= 1
SET 111= 11, 33, 55
DISPLACEMENT(SORT2, PHASE) = 111
METHOD= 100
FREOUENCY= 100
SDAMPING= 100
RANDOM= 100
SUBCASE 1
LABEL= PRESSURE LOAD
DLOAD= 100
LOADSET= 100
SUBCASE 2
LABEL CORNER LOAD
DLOAD= 200
LOADSET= 100
$
OUTPUT (XYPLOT)
$
XTGRID= YES
YTGRID= YES
XBGRID= YES
YBGRID= YES
YTLOG= YES
YBLOG= NO
XTITLE= FREQUENCY (HZ)
YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, PHASE
XYPLOT DISP RESPONSE / 11 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, MAGNITUDE
```

MSC.Nastran 102 Exercise Workbook 11-9

```
YBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, PHASE
XYPLOT DISP RESPONSE / 33 (T3RM, T3IP)
YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, MAGNITUDE
YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, PHASE
XYPLOT DISP RESPONSE / 55 (T3RM, T3IP)
$
$ PLOT OUTPUT IS ONLY MEANS OF VIEWING PSD DATA
$
XGRID= YES
YGRID= YES
XLOG= YES
YLOG= YES
YTITLE= DISP P S D AT LOADED CORNER
XYPLOT DISP PSDF / 11(T3)
YTITLE= DISP P S D AT TIP CENTER
XYPLOT DISP PSDF / 33(T3)
YTITLE= DISP P S D AT OPPOSITE CORNER
XYPLOT DISP PSDF / 55(T3)
$
BEGIN BULK
$
PARAM, COUPMASS, 1
Ś
PARAM, WTMASS, 0.00259
$
$ MODEL DESCRIBED IN NORMAL MODES EXAMPLE
$
INCLUDE 'plate.bdf'
$
$ EIGENVALUE EXTRACTION PARAMETERS
$
EIGRL, 100, 10., 2000.
$
$ SPECIFY MODAL DAMPING
$
TABDMP1, 100, CRIT,
+, 0., .03, 10., .03, ENDT
$
$ FIRST LOADING
$
RLOAD2, 100, 300, , , 310
$
TABLED1, 310,
+, 10., 1., 1000., 1., ENDT
$
```

WORKSHOP 11 Random Analysis

```
$ UNIT PRESSURE LOAD TO PLATE
$
LSEQ, 100, 300, 400
$
PLOAD2, 400, 1., 1, THRU, 40
$
$ SECOND LOADING
$
RLOAD2, 200, 600, , , 310
$
$ POINT LOAD AT TIP CENTER
$
DAREA, 600, 11, 3, 1.
$
$ SPECIFY FREQUENCY STEPS
$
FREQ1, 100, 20., 20., 49
$
$ SPECIFY SPECTRAL DENSITY
$
RANDPS, 100, 1, 1, 1., 0., 100
RANDPS, 100, 2, 2, 1., 0., 200
RANDPS, 100, 1, 2, 1., 0., 300
RANDPS, 100, 1, 2, 0., 1.0, 400
$
TABRND1, 100,
+, 20., 0.1, 30., 1., 100., 1., 500., .1,
+, 1000., .1, ENDT
$
TABRND1, 200,
+, 20., 0.5, 30., 2.5, 500., 2.5, 1000., 0.,
+, ENDT
$
TABRND1, 300,
+, 20., -.099619, 100., -.498097, 500., .070711, 1000., 0.,
+, ENDT
$
TABRND1, 400,
+, 20., .0078158, 100., .0435791, 500., -.70711, 1000., 0.,
+, ENDT
$
ENDDATA
```

Submitting the input file for analysis:

- 2. Submit the input file to MSC.Nastran for analysis.
 - 2a. To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter nastran prob11 scr=yes. Monitor the run using the UNIX ps command.
- 3. When the run is completed, use **plotps** utility to create a postscript file, **prob11.ps**, from the binary plot file **prob11.plt**. Compare the results with the plots below.

Figure 11.2

MSC. Nastran~102~ Exercise~ Workbook~ 11-13

11-14

Figure 11.5

Figure 11.6

1E~1^{1E}1 6/ 6/97 7 91E '3 1E-1 2 5 6 7 8 91E 2 6 4 7 8 DHMP 6 3 ₽ \mathbf{s} D 1E-21E-2 А Т 6 6 LOADED 3 3 1E-3 1E-3 CORNER 6 б 3 3 1E-4 1E-4б 6 3 1E-5 1E-5 In б К 3 1E-6 1.E-6 б 3 1E-7 1**E**-7 6 3 3 1E-8 1E-¹ FREQUENCY (HZ) 6 7 8 91E 3 5 6 7 8 91E 2 2 5 3 4 3 4 FREQUENCY RESPONSE WITH PRESSURE AND POINT LOADS USING THE MODAL METHOD WITH LANCZOS

Figure 11.8

MSC.Nastran 102 Exercise Workbook 11-19

Figure 11.10

MSC.Nastran 102 Exercise Workbook

11-22

WORKSHOP 12

Complex Modes of a Pile Driver

Objectives

- Define complex eigenvalue extraction parameters.
- Submit the file for analysis in MSC.Nastran.
- Compute complex modes.

12-1

Model Description:

The model is idealized as shown below in Figure 12.1. (Note that both a spring element and a damper element will be created connected Grid 2 and Grid 3.)

Figure 12.1-Model Description

Table 12.1

m ₁	3.0 lb-sec ² /in
m ₂	1.5 lb-sec ² /in
K ₁	50,000 lb/in
K ₂	12,500 lb/in
C ₂	30 lb-sec/in

Suggested Exercise Steps

- Generate an input file and submit it to the MSC.Nastran solver for complex eigenvalue analysis.
- Generate a finite element representation of the pile driver using GRID, CONM2, CELAS, and CVISC elements.
- Define material (MAT1), and element (PELAS) and (PVISC) properties.
- Apply x-direction boundary constraint (SPC1).
- Specify complex eigenvalue extraction parameters (CMETHOD) and (EIGC).
- Prepare the model for complex eigenvalue analysis (SOL107).
- Review the results, specifically the complex eigenvalues.

WORKSHOP 12 Complex Modes of a Pile Driver

ID SEMINAR, PROB12

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 12 Complex Modes of a Pile Driver

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 16, otherwise, proceed to step 2.
- 2. Create a new database and named **prob12.db**

File/New Database

New Database Name

prob12

OK

In the New Model Preference form set the following:

Tolerance

Analysis code:

◆ Default MSC/NASTRAN

OK

3. Create the model by the edit method in **Finite Elements**.

♦ Finite Elements

Action:

Object:

Method:

Create	
Node	
Edit	

□ Associate with Geometry

Node Location List

	01
100	01
	vj
-	-

Apply

Turn on the label and increase the node size by using the Quick Pick buttons.

Show Label

Node Size

4. Similarly, create Nodes 2 and 3.

Node	Location
Node 2	[100]
Node 3	[2 0 0]

5. Create the Bar Element for Node 1 and Node 2.

♦ Finite Element

Action:	Create
Object:	Element
Method:	Edit
Shape	Bar
<i>Node 1</i> =	Node 1
<i>Node</i> 2 =	Node 2
Apply	

6. Similarly, create the 2nd bar element by:

<i>Node 1</i> =	Node 2
<i>Node</i> 2 =	Node 3
Apply	

7. Create the 2 mass elements at Node 1 and Node 2.

♦ Finite Element

Action:	Create
Object:	Element
Method:	Edit
Shape:	Point
Element ID List	3
<i>Node 1</i> =	Node 1
Apply	

Element ID List	4
<i>Node 1</i> =	Node 2
Apply	

8. Create the damper elements connecting Node 2 and Node 3.

♦ Finite Element

Action:	Create
Object:	Element
Method:	Edit
Shape	Bar
<i>Node 1 =</i>	Node 2
<i>Node</i> 2 =	Node 3
Apply	

9. Create Element Properties, (spring constant).

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Input Properties ...

Spring Constant:

DOF at Node 1:

DOF at Node 2:

Application Region (In the select menu, select the **Beam Element** filter.)

Create	
1D	
Spring	
spring1	

50000	
UX	
UX	

Element 1

Add	
Apply	

10. Similarly, create the spring constant of 12,500 for the 2nd spring element.

Property Set Name:	spring2
Input Properties]
Spring Constant:	12500
DOF at Node 1:	UX
DOF at Node 2:	UX
OK	
Application Region	Element 2
Add	

UX		
UX		

11. Create Element Properties, (damper coefficient), for the damper element:

♦ Properties

Action:

Apply

Dimension:

Type:

Property Set Name:

Option(s)...

Input Properties ...

[Ext. Viscous Coeff.]

OK

Application Region

Create	
1D	
Damper	
damper	
Viscous	

Element	5

30

Add	
Apply	

12. Create the mass properties of the mass elements.

♦ Properties

Action:

Dimension:

Type:

Property Set Name:

Option(s):

Input Properties ...

Mass:

OK

Create	
0D	
Mass	
mass1	
T 1	

Lumped

13	

Application Region

(In the select menu, select the **Point Element** filter.)

Element 3

Add	
Apply	

13. Similarly, create the mass property of the 2nd mass element:

Properties	
Action:	Create
Dimension:	0D
Type:	Mass
Property Set Name:	mass2
Option:	Lumped

WORKSHOP 12 Complex Modes of a Pile Driver

Mass	15
Mass:	1.5
OK	
Application Region	Element 4
Add	
Apply	
Freate the constraint at the groun	nd, Node 3.
▲ Load/BCs	
Action:	Create
Action:	Dismla com on t
Object:	Displacement
Type:	Nodal
New Set Name:	constraint
Input Data	
Translations < T1 T2 T3 >	< 0, , >
OK	
Select Application Region]
◆ FEM	
Select Nodes:	Node 3
Add	
OK	

♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method:	Analysis Deck
Job Name:	prob12

MSC.Nastran 102 Exercise Workbook

Solution Type...

Solution Type:

Solution Parameters ...

Formulation

Complex Eigenvalue...

Number of Desired Roots=

OK	

OK	

OK		

Apply

♦ COMPLEX EIGENVALUES

Direct

4

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data previously stated. The result should be similar to the output below.

```
16. MSC.Nastran input file: prob12.dat
```

```
ID SEMINAR, PROB12
SOL 107
TIME 5
CEND
TITLE= TWO-DOF MODEL (IMAC 8, PG 891)
SUBTITLE= COMPLEX MODES
DISPLACEMENT= ALL $ DEFAULT= REAL, IMAGINARY
SPC= 100
CMETHOD= 99
$
BEGIN BULK
Ŝ
$ COMPLEX EIGENVALUE EXTRACTION PARAMETERS
$
EIGC, 99, HESS, , , , , 4
Ś
$ DEFINE GRIDS, MASSES, AND STIFFNESSES
$ GRID 1 = EXCITER (X=2, MASS=3) 50K STIFFNESS BETWEEN GRIDS 1 AND 2
$ GRID 2 = PILE (X=1, MASS=3) 12.5K STIFFNESS BETWEEN GRIDS 2 AND 3
$ GRID 3 = BASE (X=0, FIX BASE)
$
GRID, 1, , 2., 0., 0.
GRID, 2, , 1., 0., 0.
GRID, 3, , 0., 0., 0.
GRDSET, , , , , , , , 23456
CELAS2, 1, 50000., 1, 1, 2, 1
CELAS2, 2, 12500., 2, 1, 3, 1
CONM2, 201, 1, , 3.0
CONM2, 202, 2, , 1.5
SPC, 100, 3, 1
$
$ DEFINE DAMPER OF 30 BETWEEN GRIDS 2 AND 3
Ś
CVISC, 101, 1, 2, 3
PVISC, 1, 30.
Ś
ENDDATA
```

Submitting the input file for analysis:

- 17. Submit the input file to MSC.Nastran for analysis.
 - 17a. To submit the MSC.Patran .bdf file, find an available UNIX shell window. At the command prompt enter **nastran prob12.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 17b. To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter nastran prob12 scr=yes. Monitor the run using the UNIX ps command.
- 18. When the run is completed, edit the **prob12.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 19. While still editing **prob12.f06**, search for the word:

EIGENVALUE (spaces are necessary).

ICIENT		ROOT NO.	EXTRACTION ORDER	CO	M P L E E] (REAL)	X E I IGENVALUI	GEN E (IM2	VALUE AG)	E SU FRE	M M A QUENCY (CYCI	R Y LES)	DAM C	1
1 0670070 01		-	1 2		-2.6609	69E+00	-4.98	33521E+01		7.93	81520E+00		
L.00/90/E-01		2	2 3		-7.3390	31E+00	-2.36	50312E+02		3.75	6553E+01		
5.218695E-02			3 1		-2.6609	69E+00	4.98	33521E+01		7.93	31520E+00		
1.067907E-01		4	4 4		-7.3390	31E+00	2.30	50312E+02		3.75	6553E+01		20.
6.218695E-02												SUBCAS	
	COMPLEX	EIGENVALU	UE = -2.660969E+	00, -4 C O M	.9835211 IPLE2	E+01 X E I (G E N V REAL/IN	/ E C T O MAGINARY)	R NO.		1	DUDCAL	Compa
	POINT ID 1	. TYPE G	T1 1.000000E+00	.0	Т2	.0	Т3	.0	R1	.0	R2	.0	ure th
	2	G	.0 8.514119E-01	.0		.0		.0		.0		.0	e re
	3	G	1.591320E-02 .0 .0	.0 .0 .0		.0 .0 .0		.0 .0 .0		.0 .0 .0		.0 .0 .0	esults
	COMPLEX E	IGENVALUI	E = -7.339031E+0	0, -2. C O M	360312E P L E X	+02 EIG (R	E N V EAL/IMA	E C T O F AGINARY)	NO.		2	SUBCA	obtain
	POINT ID.	TYPE	T1	0	Т2	0	Т3	0	Rl	0	R2	0	ed
	Ţ	G	-4.241094E-01 -3.768431E-02	.0		.0		.0		.0		.0	In
	2	G	1.000000E+00	.0		.0		.0		.0		.0	the
	3	G	.0	.0		.0		.0		.0		.0 .0 .0	.106
	COMPLEX E	IGENVALUI	E = -2.660969E+0	0, 4.	983521E	+01 E T C	E N V	FOTOT			2	50201	μle
				CUM	гцгА	R (R	EAL/IM	AGINARY)	. 110.		3		W
	POINT ID.	TYPE	T1	^	т2	0	т3	<u>^</u>	R1	0	R2	0	Ith
	Ţ	G	1.000000E+00 .0	.0		.0		.0		.0		.0 .0	the
	2	G	8.514119E-01 -1.591320E-02	.0 .0		.0 .0		.0 .0		.0 .0		.0 .0	to
	3	G	.0 .0	.0 .0		.0		.0.0		.0 .0		.0 .0	llow
	COMPLEX EIGENVALUE = -7.339031E+00, 2.360312E+02 COMPLEX EIGENVECTOR NO. 4								SUBCA	ing r			
	(REAL/IMAGINARY)									esu			
	POINT ID. 1	TYPE G	T1 -4.241094E-01 3 768431F-02	.0	Т2	.0	Т3	.0	R1	.0	R2	.0	uts:
	2	G	1.000000E+00	.0		.0		.0		.0		.0	
	3	G	.0	.0		.0		.0		.0		.0	

21. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

22. Proceed with the Reverse Translation process, that is importing the **prob12.op2** results file into MSC.Patran. To do this, return to the *Analysis* form and proceed as follows.

WORKSHOP 13

Nolins in Linear Transient

Objectives:

- Represent non-structural variables using non-structural DOFs.
- Define dynamic functions with transfer functions.
- Create a nonlinear transient force.
- Prepare a MSC.Nastran input file for a transient analysis.
- Visualize analysis results.

Model Description:

k: $u \ge -2.0in$ **197.4 lb/in**

u < -2.0*in* **394.8 lb/in**

c: $\dot{u} \ge 0$ 1.88 lb/(in/sec) $\dot{u} \le 0$ 1.88 lb/(in/sec) + 0.3 lb/(in/sec)²

Suggested Exercise Steps:

- Generate a finite element representation of the model using (GRID), (CBAR), and (CELAS2) elements.
- Define material (MAT1) and element (PBAR) properties.
- Constraints to eliminate rigid-body modes (SPC1).
- Define non-structural variables (CONM2).
- Specify scalar damper property and connection (CDAMP2).
- Define extra points (EPOINT).
- Define dynamic transfer functions (TF).
- Add nonlinear portion of the spring (NOLIN1).
- Add nonlinear portion of the damper (NOLIN4).
- Define the time-varying load (DAREA & TLOAD2).
- Define time delay (DELAY).
- Specify integration time step.
- Prepare the model for a direct transient analysis (SOL109).
- Request response in terms of nodal displacement and nonlinear load output.
- Generate an input file and submit it to the MSC.Nastran solver for direct transient analysis.
- Review the results, specially the xy plot of nodal displacements and nonlinear load.

ID SEMINAR, PROB13

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	6	7	8	9	10

ENDDATA

WORKSHOP 13 Nolins in Linear Transient

Generating an input file for MSC.Nastran Users:

1. MSC.Nastran users can generate an input file using the data from pages 13-3 and 13-4 (general model description). The result should be similar to the output below (**prob13.dat**):

```
ASSIGN OUTPUT2 = 'prob13.op2', UNIT=12
ID NAS102, WORKSHOP13
SOL 109
TIME 100
CEND
TITLE= SIMPLE CAR MODEL WITH NOLINEAR
SUBTITLE= SPRINGS AND DAMPERS RUNNING OVER A BUMP
LABEL= SOL 109, CONSTANT DELTA TIME
SEALL= ALL
SPC= 100
TFL= 100
NONLINEAR = 100
DLOAD = 100
TSTEP = 100
DISPLACEMENT(PLOT) = ALL
NLLOAD(PLOT) = ALL
$
OUTPUT(XYPLOT)
CSCALE=1.3
XAXIS= YES
YAXIS= YES
XGRID LINES= YES
YGRID LINES= YES
XTITLE= TIME (SEC)
YTITLE= VERTICAL DISPLACEMENT OF POINT 1
XYPLOT DISP/1(T2)
YTITLE= VERTICAL DISPLACEMENT OF POINT 2
XYPLOT DISP/2(T2)
YTITLE= VERTICAL DISPLACEMENT OF POINT 3
XYPLOT DISP/3(T2)
YTITLE= VERTICAL DISPLACEMENT OF POINT 4
XYPLOT DISP/4(T2)
YTITLE= VERTICAL DISPLACEMENT OF POINT 5
XYPLOT DISP/5(T2)
YTITLE= NONLINEAR FORCES AT POINT 1
XYPLOT NONLINEAR/1(T2)
```

```
YTITLE= NONLINEAR FORCES AT POINT 2
XYPLOT NONLINEAR/2(T2)
$
BEGIN BULK
PARAM, POST, -1
PARAM, PATVER, 3.0
$
$ CARRIAGE POINTS
$
GRID, 1, , 0., 0., 0.
GRID, 2, , 120., 0., 0.
GRID, 5, , 60., 0., 0.
$
$ WHEEL POINTS
$
GRID, 3, , 0., -10., 0.
GRID, 4, , 120., -10., 0.
$
$ CAR CARRIAGE
$
CBAR, 5, 11, 1, 5, 0., 1., 0.
CBAR, 6, 11, 5, 2, 0., 1., 0.
PBAR, 11, 12, 10., 10., 10.
MAT1, 12, 3.0E+7, , .33
$
$ CONSTRAINTS TO ELIMINATE RIGID-BODY MODES
$
SPC1, 100, 1345, 1, 2, 5
SPC1, 100, 13456, 3, 4
$
$ SYSTEM WILL HAVE A NATURAL FREQUENCY OF 1 HZ
$ WITH CRITICAL DAMPING OF 1 PERCENT
$
CONM2, 10, 1, ,2.5
CONM2, 15, 2, ,2.5
CONM2, 20, 5, ,5.
$
CELAS2, 30, 197.4, 1, 2, 3, 2
CELAS2, 40, 197.4, 2, 2, 4, 2
$
CDAMP2, 50, 1.88, 1, 2, 3, 2
CDAMP2, 60, 1.88, 2, 2, 4, 2
$
$ DEFINE EXTRA POINTS TO HOLD DIFFERENCES
$ BETWEEN WHEELS AND CARRIAGE
```

WORKSHOP 13 Nolins in Linear Transient

```
$
EPOINT, 101, 102
$
$ USE TRANSFER FUNCTIONS TO TRACK DIFFERENCES
$ 101= V1 - V3
$ 102= V2 - V4
$
TF, 100, 101, 0, 1., 0., 0.,
, 1, 2, -1., 0., 0.,
, 3, 2, 1., 0., 0.
Ś
TF, 100, 102, 0, 1., 0., 0.,
, 2, 2, -1., 0., 0.,
, 4, 2, 1., 0., 0.
Ś
$ ADD NONLINEAR PORTION OF SPRINGS
$
NOLIN1, 100, 1, 2, 197.4, 101, 0, 111
NOLIN1, 100, 2, 2, 197.4, 102, 0, 111
TABLED2, 111, -2.0,
, -1., 1., 0., 0., 1., 0., ENDT
$
$ ADD NONLINEAR PORTION OF DAMPERS
$
NOLIN4, 100, 1, 2, -0.3, 101, 10, 2.
NOLIN4, 100, 2, 2, -0.3, 102, 10, 2.
$
$ USE LAGRANGE MULTIPLIERS TO IMPOSE WHEEL DISPLACEMENT
$ 103= V3
$ 104= V4
$
EPOINT, 103, 104
$
TF, 100, 103, 0, 0., 0., 0.,
, 3, 2, 1., 0., 0.
TF, 100, 3, 2, 0., 0., 0.,
, 103, 0, 1., 0., 0.
$
TF, 100, 104, 0, 0., 0., 0.,
, 4, 2, 1., 0., 0.
TF, 100, 4, 2, 0., 0., 0.,
, 104, 0, 1., 0., 0.
$
```

```
$ MOVE WHEELS OVER BUMP
$
TLOAD2, 100, 222, 333, 0, 0., 0.5, 1., -90.
DAREA, 222, 103, 0, 4.
DAREA, 222, 104, 0, 4.
DELAY, 333, 104, 0, 1.2
$
$ INTEGRATION INFORMATION
TSTEP, 100, 200, .05, 1
$
ENDDATA
```

Submitting the input file for analysis

2. Submit the input file to MSC.Nastran for analysis.

To submit the MSC.Nastran .dat file, find an available UNIX shell window and at the command prompt enter nastran prob13 scr=yes. Monitor the run using the UNIX ps command.

- 3. When the run is completed, use **plotps** utility to create a postscript file, **prob13.ps**, from the binary plot file **prob13.plt**. The nonlinear force and displacement plots are shown in figures 13.3 to 13.9.
- 4. When the run is completed, edit the **prob13.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 5. While still editing **prob13.f06**, search for the word:

XY-OUTPUT SUMMARY (spaces are necessary).

											6.	Comparison
				Х	Y - O U T P U	TSUMMAI	RY (RESP	ONSE)			Con	<u>o</u> f
SUBCASE	CURVE	FRAME	CUIDIZE	TD	XMIN-FRAME	I/ XMAX-FRAM	E/ YMIN-FRAM	E/ X FOR	YMAX-FRAM		i gdi	Σ
1	I I PE	NO. 1	LURVE	1)	ALL DAIA	ALL DAIA			ALL DAL 2 075151111-02		ure	Ð
T	NONLIN	Ţ	т(-	±)	0.000000E+00	1 000002E+01	0.000000E+00	0.0000000000000000000000000000000000000	2.975151E+02 2 975151E+02	6 00000	5 (Ű
1	NONLTN	2	2.(4	1)	0 000000E+00	1 000002E+01	0.000000E+00	0.000000E+00	4 661461E+02	1 74999	he	
-	NONLIN	-	2 (- /	0.000000E+00	1.000002E+01	0.000000E+00	0.000000E+00	4.661461E+02	1.74999		Ŧ
1	DISP	3	1(4	L)	0.000000E+00	1.000002E+01	-2.836541E+00	2.199999E+00	5.942877E+00	4.50000	est (S
					0.00000E+00	1.000002E+01	-2.836541E+00	2.199999E+00	5.942877E+00	4.50000	ilt:	
1	DISP	4	2(4	Ł)	0.00000E+00	1.000002E+01	-2.671688E+00	1.999999E+00	7.464218E+00	1.60000	0	
					0.00000E+00	1.000002E+01	-2.671688E+00	1.999999E+00	7.464218E+00	1.60000	90	
1	DISP	5	3(4	Ł)	0.00000E+00	1.000002E+01	-4.440892E-16	5.000001E-01	4.00000E+00	2.50000	tai	
					0.00000E+00	1.000002E+01	-4.440892E-16	5.000001E-01	4.00000E+00	2.50000	ne	
1	DISP	6	4(4	L)	0.00000E+00	1.000002E+01	-1.332268E-15	1.749999E+00	4.00000E+00	1.45000	d	
					0.00000E+00	1.000002E+01	-1.332268E-15	1.749999E+00	4.000000E+00	1.45000	in	
1	DISP	7	5(4	E)	0.00000E+00	1.000002E+01	-2.150819E+00	2.149999E+00	3.963917E+00	1.60000	-	
					0.00000E+00	1.000002E+01	-2.150819E+00	2.149999E+00	3.963917E+00	1.60000	he	

13-14

- 7. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.
- 8. Proceed with the Reverse Translation process, that is importing the **prob13.op2** results file into a blank MSC.Patran database..

File/New

New database name:	prob13
♦ Analysis	
Action:	Read Output2
Object:	Both
Method:	Translate
Select Results File	
Select Available Files	prob13.op2
ОК	
Apply	

9. Plot the results in xy plots.

The first plot is to make the Displacement versus Frequency plot at Node 1.

♦ Results

Action:

Object:

Select Results Cases

Filter Method

Select y Result:

Quanity:

Create
Graph
Springs and Dampers
All
Nonlinear Applied Load Translational
Magnitude

MSC.Nastran 102 Exercise Workbook 13-15

<i>x:</i>	Global Variable
Variable:	Time
Target Enities	
Select Nodes:	Node 1

Target Enities

Select Nodes:

Apply

To get the displacement results:

Target Enities

Apply

Select Nodes:Node 1Select Results CasesDisplacement, TranslationalQuanity:Y Component

MSC.Nastran 102 Exercise Workbook **13-17**

Target Enities

Select Nodes:

Node 2

Apply

WORKSHOP 13 Nolins in Linear Transient

Node 3

Apply

Figure 13.7-Vertical Displacement of Point 3

Select Nodes:

Node 4

Apply

Figure 13.9-Vertical Displacement of Point 5

WORKSHOP 14a

Modal Analysis of a Beam

Objectives

- Perform normal modes analysis of a cantilever beam.
- Submit the file for analysis in MSC.Nastran.
- Find the first three natural frequencies and mode shapes of the beam.

Model Description:

The goal of this example is to find the first 3 modes of a beam pinned at both ends.

Figure 14a.1 below is a finite element representation of the beam. One end is contrained in all translation and the other is free to move in the X. Both ends are held in the X-rotation.

Figure 14a.1-Grid Coordinates and Element Connectivities

Table 14a.1

Length	100 in
Height	2 in
Width	1 in
Thickness	0.100 in
Area	0.38 in ²
I ₁	0.229 in ⁴
I ₂	0.017 in ⁴

Hand Calculations

WORKSHOP 14a

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \right]^{1/2}$$

$$f_n = K_n \left(\frac{1}{2\pi} \left[\frac{10 \times 10^6 (0.229)(386.4)}{(0.38)(0.101)(100)^4} \right]^{1/2} \right)$$
$$f_n = K_n (2.417)$$

* I of the strong axis is used since translational Z DOF has been constrained by the permanent constraint.

From Theory

Mode	Kn	fn
1	9.87	23.85 Hz
2	39.5	95.46 Hz
3	88.8	214.59 Hz

Suggested Exercise Steps

- Explicitly generate a finite element representation of the beam structure. (i.e., the grids (GRID) and element connectivities (CBAR) should be defined manually.)
- Define material (MAT1) and element (PBARL) properties.
- Apply the fixed boundary constraints (SPC1).
- Prepare the model for a normal modes analysis (SOL 103 and PARAMS).
 - PARAM, WTMASS, 0.00259
 - PARAM, COUPMASS, 1
 - EIGRL (To select Lanczos.)
- Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis.
- Review the results, specifically the eigenvalues.

WORKSHOP 14a Modal Analysis of a Beam

ID SEMINAR, PROB1

CEND

BEGIN BULK

1	2	3	4	5	б	7	8	9	10

WORKSHOP 14a

Modal Analysis of a Beam

1	2	3	4	5	б	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 10, otherwise, proceed to step 2.
- 2. Create a new database named **prob14a.db**.

File/New Database

New Database Name

prob14a

OK

In the New Model Preference form set the following:

Tolerance

◆ Default

Analysis Code:

ОК

MSC/NASTRAN

3. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

4. Create a curve.

٠	Geometry
---	----------

Action:

Object:

Method:

Vector Coordinates List

Origin Coordinates List

Apply

Create	
Curve	
XYZ	
<100, 0, 0>	
[0, 0, 0]	

Modal Analysis of a Beam

5. Create the finite element model and mesh the surface.

♦ Finite Elements

Action:

Object:

WORKSHOP 14a

Type:

Global Edge Length

Curve List

Create	
Mesh	
Curve	
10	
Curve 1	

Apply

6. Create nodal displacements.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Translations <T1 T2 T3>

Rotations <R1 R2 R3>

OK

Select Application Region...

Geometry

Select Geometry Entities

OK

Apply

New Set Name

Input Data...

Translations <T1 T2 T3>

Create
Displacement
Nodal
disp1

Г

<0 0 0>	
<0,, >	

Point 1

disp2

< , 0 0>

MSC.Nastran 102 Exercise Workbook

7. Create a set of material properties for the bar.

♦ Materials

Action:

Object:

Method:

Material Name

Input Properties...

Elastic Modulus =

Poisson Ratio =

Density =

Create	
Isotropic	
Manual Input	
alum	

10.0E6	
.3	
.101	

MSC.Nastran 102 Exercise Workbook

Apply
Cancel

8. Define the bar properties.

♦ Properties

Action:

Dimension:

Type:

Property Set Name

Input Properties...

Material Name (Select from Material Property Sets box)

Use Beam Section

New Section Name

Η	
W1	
W2	
t	
tl	
t2	

OK

Bar Orientation

OK

Select Members

Create	
1D	
Beam	
bar	

m:alum

<*Click on Beam Library>*

ibeam	
2	
1	
1	
0.1	
0.1	
0.1	

Coord 0.2

Curve 1

9. Now, you will generate the input file for analysis.

♦ Analysis

Action:

Object:

Method

Job Name

Solution Type...

Solution Type:

Solution Parameters ...

<deselect Automatic Constraints>

Mass Calculation:

Data Deck Echo:

Wt. -Mass Conversion =

OK

Available Subcases

Subcase Parameters...

Number of Desired Roots =

OK

Analyze

Entire Model

Analysis Deck

prob14a

♦ NORMAL MODES

□ Automatic Constraints

Coupled
None
.00259

Default

3

<to close form>

An MSC.Nastran input file called **prob14a.bdf** will be generated. The process of translating your model into an input file is called Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 11.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from Table 14a.1. The result should be similar to the output below.

10. MSC.Nastran Input File: prob14a.dat

SOL 103	3								
TIME 60	00								
CEND									
TITLE =	= Norma	l Modes Exa	ample						
SUBCASE	I 1								
METH	HOD = 1								
SPC	= 1								
VECT	FOR=ALL								
BEGIN H	BULK								
PARAM, W	WTMASS,	.00259							
PARAM, O	COUPMAS	S,1							
EIGRL	1			3	0				
PBARL	1	1	I					+	A
+	A 2.	1.	1.	.1	.1	.1			
CBAR	1	1	1	2	0.	1.	0.		
CBAR	2	1	2	3	0.	1.	0.		
CBAR	3	1	3	4	0.	1.	0.		
CBAR	4	1	4	5	0.	1.	0.		
CBAR	5	1	5	6	0.	1.	0.		
CBAR	б	1	б	7	0.	1.	0.		
CBAR	7	1	7	8	0.	1.	0.		
CBAR	8	1	8	9	0.	1.	0.		
CBAR	9	1	9	10	0.	1.	0.		
CBAR	10	1	10	11	0.	1.	0.		
MAT1	1	1.+7		.3	.101				
GRID	1		0.	0.	0.		345		
GRID	2		10.	0.	0.		345		
GRID	3		20.	0.	0.		345		
GRID	4		30.	0.	0.		345		
GRID	5		39.9999	0.	0.		345		
GRID	6		49.9999	0.	0.		345		
GRID	7		60.	0.	0.		345		
GRID	8		70.	0.	0.		345		
GRID	9		80.	0.	0.		345		
GRID	10		90.	0.	0.		345		
GRID	11		100.	0.	0.		345		
SPC1	1	1234	1						
SPC1	1	234	11						
ENDDATA	Ą								

Submit the input file for analysis

- 11. Submit the input file to MSC.Nastran for analysis.
 - 11a. To submit the MSC.Patran **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran prob14a.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 11b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob14a scr=yes. Monitor the run using the UNIX ps command.
- 12. When the run is completed, edit the **prob14a.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 13. While still editing **prob14a.f06**, search for the word:

E I G E N (spaces are necessary)

What are the first three modes?

1st = ____Hz

2nd = _____Hz

3rd =____Hz
Comparison of Results

14. Compare the results obtained in the .f06 file with the following results:

D +04 +05 +06

			REAL EIGE	NVALUES	
MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED GENERALIZE
NO.	ORDER				MASS STIFFNESS
1	1	2.239398E+04	1.496462E+02	2.381693E+01	1.000000E+00 2.239398E
2	2	3.549898E+05	5.958102E+02	9.482614E+01	1.000000E+00 3.549898E
3	3	1.771818E+06	1.331096E+03	2.118506E+02	1.000000E+00 1.771818E

MSC.Nastran 102 Exercise Workbook

14a-17

15. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

16. Proceed with the Reverse Translation process, that is importing the **prob14a.op2** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method

Select Results File...

Select Results File

Read Output2 Result Entities Translate

prob14a.op2

Create

Deformation

Default, Mode 1:Freq=23.816

Eigenvectors, Translational

Apply

OK

When the translation is complete bring up the *Results* form.

♦ Results

Action:

Object:

Select Results Cases

Select Deformation Result

Apply

To reset the graphics, click on this icon:

Reset Graphics

You can go back and select any *Results Case*, *Fringe Results or Deformation Results* you are interested in.

Quit MSC.Patran when you are finished with this exercise.

WORKSHOP 14b

Normal Modes with Differential Stiffness

Objectives

- Analyze a stiffened beam for normal modes.
- Produce an MSC/ NASTRAN input file that represent beam and load.
- Submit for analysis.
- Find normal modes (natural frequencies).

Model Description:

The goal of this example is to analyze a stiffened model. In this case, the beam from Problem 14a. with a 500 lb force applied.

Figure 14b.1 below is a finite element representation of the beam. This is no longer a simple normal modes analysis. Instead we will be using a nonlinear static solution (SOL 106) with (PARAM, NMLOOP and METHOD and EIGRL).

Below is a finite element representation of the beam. One end is pinned in 3 translations and one rotation. The other is pinned in 2 translations and one rotation with a 500 lb force applied.

Figure 14b.1-Grid Coordinates and Element Connectivities

Figure 14b.2-Beam Cross Section

Table 14b.1

Length	100 in
Height	2 in
Width	1 in
Thickness	0.100 in
Area	0.38 in ²
I ₁	0.229 in ⁴
I ₂	0.017 in ⁴

WORKSHOP 14b Normal Modes with Differential Stiffness

Theoretical Solution

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \left(1 + \frac{1}{Kr} \frac{Pl^2}{EI} \right) \right]^{1/2}$$

For Mode 1, Kr = 9.87

$$f_n = \frac{9.87}{2\pi} \left[\frac{10 \times 10^6 (0.229)(386.4)}{(0.38)(0.101)(100)^4} x \left(1 + \frac{1}{9.87} \frac{(500)(100)^2}{(10 \times 10^6)(0.229)} \right) \right]^{1/2}$$
$$f_n = 26.36 Hz$$

For Static Load

$$\Delta = \frac{PL}{AE}$$

$$\Delta = \frac{500(100)}{0.38(10 \times 10^{6})}$$
$$\Delta = 0.0132$$

14b-5

Suggested Exercise Steps

- Open database created in Problem 1a in order to modify it, adding a load and reanalyze.
- Create 500 lb force applied at one end (FORCE).
- Make sure analysis is set to nonlinear static (SOL 106).
- Prepare nonlinear analysis to also analyze for normal mode (PARAM NMLOOP, EIGRL, LGDISP, NLPARM).
- Review the results, specifically the eigenvectors.

WORKSHOP 14b Normal Modes with Differential Stiffness

ID SEMINAR, PROB1

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10

WORKSHOP 14b

Normal Modes with Differential Stiffness

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 6, otherwise, proceed to step 2.
- 2. Open database created in Problem 14a named **prob14a.db**.

File/Open Database

Existing Database Name

prob14a

OK

3. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Ц.	Show Labels
----	-------------

[

4. Create force.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Force <*F1 F2 F3*>

OK

Select Application Region...

Select Geometry Entities

Create	
Force	
Nodal	
pull	
•	

|--|

Point 2

Add	
OK	
Apply	

5. Now, you will generate the input file for analysis.

♦ Analysis

Action:

Analyze

14b-10

WORKSHOP 14b Normal Modes with Differential Stiffness

<i>Object:</i>

Method

Job Name

Solution Type...

Solution Type:

Solution Parameters ...

<deselect Automatic Constraints>

Mass Calculation:

Data Deck Echo:

Wt. -Mass Conversion =

OK

Direct Text Input...

◆ Case Control Section

Bulk Data Section

OK

OK

Apply

Cancel

Apply

Subcase Create...

Available Subcases

Subcase Parameters...

Number of Load Increments =

Analysis Deck

prob14b

◆ NONLINEAR STATIC

□ Automatic Contraints

Coupled	
None	
.00259	

METHOD = 10

PARAM, NMLOOP, 5 EIGRL, 10, , , 3

Default

5

An MSC.Nastran input file called **prob14b.bdf** will be generated. The process of translating your model into an input file is called Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 7.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from Table 14b.1. The result should be similar to the output below.

6. MSC.Nastran Input File: prob14b.dat

SOL 106 TIME 600 CEND \$ TITLE = Normal Modes with Differential Stiffness METHOD = 10SUBCASE 1 NLPARM = 1SPC = 1LOAD = 1DISPLACEMENT=ALL \$ BEGIN BULK PARAM COUPMASS 1 PARAM WTMASS .00259 PARAM LGDISP 1 NLPARM 1 5 AUTO 5 25 ΡW NO + Α .001 1.-7 Α + PARAM, NMLOOP, 5 \$ EIGRL, 10,,,3 PBARL 1 1 Ι В + в 2. 1. 1. + .1 .1 .1 CBAR 1 1 1 2 0. 1. 0. 2 2 CBAR 1 3 0. 1. 0. CBAR 3 1 3 4 0. 1. 0. CBAR 4 1 4 5 Ο. Ο. 1. CBAR 5 1 5 б 0. 1. 0. 7 б 1 б CBAR Ο. 1. 0. 7 1 7 8 CBAR 0. 1. 0. 1 CBAR 8 8 9 0. 1. 0. CBAR 9 1 9 10 0. 1. 0. CBAR 10 1 10 11 Ο. 1. 0. \$ MAT1 1 1.+7 .3 .101 0. GRID 1 0. 0. 345 GRID 2 10. 0. 0. 345 20. Ο. 3 0. GRID 345 GRID 4 30. 0. 0. 345 5 39.9999 0. GRID 0. 345 49.9999 0. GRID 6 0. 345 7 60. 0. GRID 0. 345 GRID 8 70. 0. 0. 345 GRID 9 80. 0. 0. 345 GRID 90. 10 0. 0. 345

MSC.Nastran 102 Exercise Workbook

WORKS	HOP 14b	<u>Nor</u>	rmal M	Iodes	with	Differential	Stiffness
GRID	11		100.	0.	0.	345	1
LOAD	2	1.	1.	1			

234 11 11 0 500. 1. 0. 0.

 SPC1
 1
 1234
 1

 SPC1
 1
 234
 11

 FORCE
 1
 11
 0

ENDDATA

Submit the input file for analysis

- 7. Submit the input file to MSC.Nastran for analysis.
 - 7a. To submit the MSC.Patran .bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob14b.bdf scr=yes. Monitor the run using the UNIX ps command.
 - 7b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob14b scr=yes. Monitor the run using the UNIX ps command.
- 8. When the run is completed, edit the **prob14b.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 9. While still editing **prob14b.f06**, search for the word:

E I G E N (spaces are necessary)

What are the first three natural frequencies?

1st =____Hz

2nd = _____Hz

3rd = _____Hz

Comparison of Results

		10.
	following	Compare
	resu	the
ENE STI	lts:	results
182 509		obtained
		in
		the
		.f06
		file
		with
		the

MSC	MODE NO.	EXTRACTION ORDER	EIGENVALUE	RADIANS	CYCLES	GENERALIZED MASS	GENF ST1
SC.Nastran 102 Exercise Workb	1 2 3	1 2 3	2.735837E+04 3.748482E+05 1.816509E+06	1.654037E+02 6.122484E+02 1.347779E+03	2.632481E+01 9.744236E+01 2.145057E+02	1.000000E+00 1.000000E+00 1.000000E+00	2.735837 3.748482 1.816509
ook							

11. MSC.Nastran Users should have finished this exercise. MSC.Patran Users should proceed to the next step.

12. Proceed with the Reverse Translation process, that is importing the **prob14b.op2** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Select Results File	
Method	
Object:	
Action:	

Read Output2	
Result Entities	
Translate	

prob14b.op2

OK Apply

Select Results File

When the translation is complete bring up the **Results** form.

♦ Results

Action:

Object:

Select Results Cases

Select Deformation Result

Create Deformation Default, Mode 1:Freq=26.325 Eigenvectors, Translational

Apply

To reset the graphics, click on this icon:

Reset Graphics

You can go back and select any *Results Case, Fringe Results or Deformation Results* you are interested in.

Quit MSC.Patran when you are finished with this exercise.

WORKSHOP 15

Weight Minimization of a Three Bar Truss

Objectives:

- Minimize the weight of the truss.
- First mode must be between 1500-1550 Hz.
- Submit the file for analysis in MSC.Nastran.
- Recover the desired objective while satisfying the frequency requirement.

Model Description:

You must minimize the weight of the following three bar truss problem. The first mode must be between 1500-1550 hz. The model will have different areas for the inside and outside beams. The structure must remain symetric.

Below is a Geometric representation of the truss. It also contains the loads and boundary constraints.

Elastic Modulus	10E6
Poisson's Ratio	.33
Density	.1
WtMass Conversion	.00259
Area 1	1.0
Area 2	2.0

Optimization Statement

Suggested Exercise Steps:

- Generate the analysis model. The nodes (GRID) and element connectivities (CROD) should be defined manually.
- Define material (MAT1) and element (PROD) properties.
- Apply fixed boundary constraints (SPC1) to the upper nodes.
- Create the appropriate design optimization model.
- Define the design variables (DESVAR).
- Relate one design variable to another design variable (DLINK).
- Define design variable to analysis model parameter relations (DVPREL).
- Specify design sensitivity response quantities (DRESP1).
- Define constraints (DCONSTR).
- Define optimization control parameters (DOPTPRM).
- Prepare the model for linear static analysis and normal modes analysis using Lanczos Method.
 - PARAM, WTMASS, 0.00259
- Generate an input file and submit it to MSC.Nastran for structural optimization analysis.
- Review the results, specifically the eigenvalues and the design variable history.

ID SEMINAR, PROB15

CEND

BEGIN BULK

15-6

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilitizing MSC.Patran for generating an input file should go to Step 14, otherwise, proceed to step 2.
- 2. Create a new database called **prob15.db**.

File/New...

New Database Name:

prob15

OK

In the New Model Preferences form set the following:

Tolerance:

Analysis Code:

Analysis Type:

• Default

MSC/NASTRAN
Structural

ОК

3. Activate the entity labels by selecting the **Show Labels** button on the toolbar.

<u> </u>	
	Т
<u> </u>	Т
- ' -	
 	•

Show Labels

4. Change to a front view by selecting the **Front View** button on the toolbar.

Y ZX	Front View
---------	------------

Whenever possible click \Box Auto Execute (turn off).

5. Create nodes.

♦ Finite Elements	
Action:	Create
Object:	Node
Method:	Edit

MSC.Nastran 102 Exercise Workbook

15-9

Apply

6. Create bars.

♦ Finite Elements	
Action:	Create
Object:	Elemen
Method:	Edit
Shape:	Bar
<i>Node 1</i> =	Node 1
<i>Node</i> 2 =	Node 4
Apply	
<i>Node 1 =</i>	Node 2
<i>Node</i> 2 =	Node 4
Apply	
<i>Node 1</i> =	Node 3
<i>Node</i> 2 =	Node 4
Apply	

□ Associate with Geometry

Figure 15.2-Nodes and Element Labels

7. Next, define a material using the specified modulus of elasticity and allowable stresses.

♦ Materials	
Action:	Create
Object:	Isotropic
Method:	Manual Input
Material Name:	alum
Input Properties	
Elastic Modulus =	10e6
Poisson Ratio=	0.33
Density=	0.1
ОК	

Apply

8. Next, reference the material that was created in the previous step.

♦ Properties	
Action:	Create
Dimensior:	1D
Type:	Rod
Property Set Name:	prop_1
Input Properties	
Material Name:	m:alum
Area:	1
OK	

Pick **Select Members** and then click on the **Beam element** icon from the small menu window.

Beam element

Select Members:

Elm 1 3

Add	
Apply	

Property Set Name:

Input Properties...

Area:

OK

Select Members:

Add	
Apply	

prop_2

Elm 2

9. Create nodal constraints.

◆ Loads/BCs	
Action:	Create
Object:	Displacement
Type:	Nodal
New Set Name:	disp_1
Input Data	
Translations < T1 T2 T3 >:	< 0, 0, 0 >
Rotations < R1 R2 R3 >:	< 0, 0, 0 >
ОК	
Select Application Region	
Geometry Filter:	• FEM
Select Nodes:	Node 1:3
Add	
OK	
Apply	
New Set Name:	disp_2
Input Data	
Translations < T1 T2 T3 >:	< , ,0>
Rotations < R1 R2 R3 >:	< 0, 0, 0 >
OK	
Select Application Region	
Geometry Filter:	● FEM
Select Nodes:	Node 4
Add	
OK	

Apply

10. Activate the entity labels by selecting the **Hide Labels** button on the toolbar.

11. Create Load Cases.

◆ Load Cases	
Action:	Create
Load Case Name:	case_1
Assign/Prioritize Loads/BCs	
Select Individual Loads/BCs	Displ_disp_1
	Displ_disp_2

OK	
Apply	

MSC.Nastran 102 Exercise Workbook

Weight Minimization of a Three Bar Truss WORKSHOP 15

Using Tools for Model Variables. 12.

Tools/Model Variables...

Action:	Create
Object:	Variable
Method:	Property

Dimension:

Type:

Select Property Set:

Select Property Name:

Apply

Apply

Close

Select Property Set:

Select Property Name:

prop_2	
Area	

1D

Rod

prop_1

Area

Using Tools for Design Study. 13.

Tools/Design Study...

Action:

Object:

Design Study Name:

Create **Design Study**

opt_1

Design Variables...

Lower Bound

Upper Bound

prop_1_Area:	0.1	100
prop_2_Area:	0.1	100

15-15

OK

Design Objective...

Existing Objectives:

Min/Max:

OK

Design	Constraints
--------	-------------

Action:

Solution:

Response:

Constraint Name:

Frequency Mode Number:

Lower Bound (Hz):

Upper Bound (Hz):

Apply	
Close	1
01050	

Frequency	
FREQ_1	
1	
1500	

Normal Modes

Total_Weight

minimize

Create

1550

Apply	
Close	

Now you are ready to generate an input file for analysis.

Click on the Analysis radio button on the Top Menu Bar and 14. complete the entries as shown here.

♦ Analysis	
Action:	Optimize
Object:	Entire Model
Method:	Analysis Deck
Job Name:	prob15
Translation Parameters	

WORKSHOP 15 Weight Minimization of a Three Bar Truss

Data Output:	OP2 and Print
ОК	
Optimization Parameters	
Mass Calculation	Coupled
WtMass Conversion =	.00259
Maximum Number of Design cycles (DESMAX) =	30
Print Design Data (P1) every n-th cycle where n =	1
Print Analysis Results (NASPRT) every n-th cycle where n =	1
ОК	
Subcase Create	
Solution Type:	103 Normal Modes
Available Subcases:	case_1
Constraints in Current Subcase:	FREQ_1
Apply	
Cancel	
Subcase Select	
Solution Type:	103 Normal Modes
Subcases Available:	case_1
OK Apply	

An MSC.Nastran input file called **prob15.bdf** will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC/NATRAN users should proceed to **Step 15**.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from page 15-3 (Model Description). The result should be similar to the output below.

15. MSC.Nastran input file: prob15.dat

```
ASSIGN OUTPUT2='prob15.op2', UNIT=12
ID NAS102, WORKSHOP 15
TIME 10
SOL 200
        $ OPTIMIZATION
CEND
TITLE= SYMMETRIC THREE BAR TRUSS DESIGN OPTIMIZATION - VARIATION OF D200X1
SUBTITLE= GOAL IS TO MIN WT WHILE KEEPING THE 1ST MODE BETWEEN 1500-1550 HZ
ECHO= SORT
SPC= 100
DISP(PLOT) ALL
DESOBJ(MIN) = 100 $ (DESIGN OBJECTIVE = DRESP ID)
DESSUB= 200 $ DEFINE CONSTRAINT SET FOR BOTH SUBCASES
SUBCASE 1
 ANALYSIS= MODES
METHOD= 10
BEGIN BULK
$
$-----
$ ANALYSIS MODEL
$-----
          ___
$
EIGRL, 10, , , 2
PARAM, POST, -1
PARAM, PATVER, 3.0
$
$ GRID DATA
$
    2 3
                4 5 6 7
                                     8 9
                                                 10
GRID, 1, ,
                -10.0, 0.0, 0.0
GRID, 2,
                  0.0, 0.0, 0.0
           ,
                 10.0,
                        0.0, 0.0
GRID, 3,
           ,
GRID, 4,
                  0.0, -10.0, 0.0
           ,
$ SUPPORT DATA
SPC, 100, 1,
                123456, ,
                            2,
                                  123456
SPC,
     100, 3,
                123456, , 4,
                                   3456
$ ELEMENT DATA
CROD, 1, 11,
                1,
                        4
CROD, 2, 12,
                2,
                        4
```
WORKSHOP 15 W

13, 3, CROD, 3, 4 \$ PROPERTY DATA PROD, 11, 1, 1.0 PROD, 12, 1, 2.0 PROD, 13, 1.0 1, MAT1, 1, 1.0E+7,, 0.33, 0.1 \$ PARAM, WTMASS, .00259 \$ \$-----\$ DESIGN MODEL \$-----Ś \$...DESIGN VARIABLE DEFINITION \$ \$DESVAR, ID, LABEL, XINIT, XLB, XUB, DELXV(OPTIONAL) A1, 1.0, 0.1, DESVAR, 1, 100.0 DESVAR, 2, A2, 2.0, 0.1, 100.0 A3, 1.0, 0.1, 100.0 DESVAR, 3, \$ \$... IMPOSE X3=X1 (LEADS TO A3=A1) \$ DDVID, CO, CMULT, IDV1, C1, IDV2, C2, \$DLINK, ID, + IDV3, C3, \$+, . . . DLINK, 1, 3, 0.0, 1.0, 1 1.00 \$ \$...DEFINITION OF DESIGN VARIABLE TO ANALYSIS MODEL PARAMETER RELATIONS Ś \$DVPREL1,ID, TYPE, PID, FID, PMIN, PMAX, CO, , + \$+, DVID1, COEF1, DVID2, COEF2, ... DVPREL1, 10, PROD, 11, 4, +DP1 , 1 , , +DP1, 1, 1.0 DVPREL1, 20, PROD, 12, 4, +DP2 , , , +DP2, 2, 1.0 DVPREL1, 30, PROD, 13, 4, , +DP3 , , , +DP3, 3, 1.0 \$ \$...STRUCTURAL RESPONSE INDENTIFICATION Ś \$DRESP1 ID LABEL RTYPE PTYPE REGION ATTA ATTB ATT1 + \$+ ATT2 . . . DRESP1 100 W WEIGHT DRESP1 210 MODE1 EIGN 1

MSC.Nastran 102 Exercise Workbook 15-19

\$
\$
\$...CONSTRAINTS
\$
\$
\$DCONSTR,DCID, RID, LALLOW, UALLOW
DCONSTR, 200, 210, 8.883E7, 9.485E7
\$
\$
\$...OPTIMIZATION CONTROL
\$
DOPTPRM, DESMAX, 30
\$
\$
\$.....2...3...4...5...6...7...8...9...0
ENDDATA

Submitting the input file for analysis:

- 16. Submit the input file to MSC.Nastran for analysis.
 - 16a. To submit the MSC.Patran.bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob15.bdf scr=yes. Monitor the run using the UNIX ps command.
 - 16b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran prob15 scr=yes. Monitor the run using the UNIX ps command.
- 17. Edit the **prob15.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 18. While still editing **prob15.f06**, search for the word:

DESIGN VARIABLE HISTORY

Design Variable	Initial Value	Optimization Value	Iteration Value
1			
2			
3			

Comparison of Results

19. Compare the results obtained in the .f06 file with the results on the fol-lowing page::

SUMMARY OF DESIGN CYCLE HISTORY

(HARD CONVERGENCE ACHIEVED)

(SOFT CONVERGENCE ACHIEVED)

NUMBER OF FINITE ELEMENT ANALYSES COMPLETED 13 NUMBER OF OPTIMIZATIONS W.R.T. APPROXIMATE MODELS 12

OBJECTIVE AND MAXIMUM CONSTRAINT HISTORY

CYCLE NUMBER	OBJECTIVE FROM APPROXIMATE OPTIMIZATION	OBJECTIVE FROM EXACT ANALYSIS	FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT
INITIAL		4.828427E+00	1.195946E-01	
1	4.601859E+00	4.602146E+00	-6.247799E-05	7.284999E-03
2	3.726671E+00	3.726556E+00	3.090150E-05	1.419008E-03
3	2.981427E+00	2.981173E+00	8.501315E-05	1.431373E-03
4	2.390100E+00	2.390151E+00	-2.144634E-05	2.942288E-04
5	1.917196E+00	1.917195E+00	4.974322E-07	6.048387E-05
6	1.532210E+00	1.532388E+00	-1.162230E-04	-4.593781E-04
7	1.227819E+00	1.227710E+00	8.884553E-05	-1.306546E-04
8	9.821384E-01	9.821677E-01	-2.985792E-05	-1.306546E-04
9	7.867956E-01	7.866402E-01	1.976112E-04	5.399446E-04
10	6.290510E-01	6.290196E-01	4.984271E-05	2.694998E-04
11	5.992411E-01	5.992462E-01	-8.554079E-06	1.614478E-05
12	5.992462E-01	5.992462E-01	0.000000E+00	1.614478E-05

MSC.Nastran 102 Exercise Workbook 15-23

	DESIGN VARIABLE HISTORY							
INTERNAL DV. ID.	EXTERNAL DV. ID.	LABEL	INITIAL :	1 :	2 :	3 :	4	: 5 :
1 2	1 2	PROP_1:1 PROP_2:2	1.0000E+00 : 2.0000E+00 :	7.7875E-01 : 2.3995E+00 :	6.2355E-01 : 1.9629E+00 :	4.9884E-01 : 1.5702E+00 :	3.9907E-01 1.2614E+00	: 3.1996E-01 : : 1.0122E+00 :
INTERNAL DV. ID.	EXTERNAL DV. ID.	LABEL	6 :	7 :	8 :	9 :	10 :	11 :
1 2	1 2	PROP_1:1 PROP_2:2	2.5549E-01 : 8.0977E-01 :	2.0482E-01 : 6.4840E-01 :	1.6385E-01 : 5.1872E-01 : 4	1.3140E-01 : 4.1497E-01 :	1.0502E-01 : 3.3198E-01 :	1.0000E-01 : 3.1640E-01 :
INTERNAL DV. ID.	EXTERNAL DV. ID.	LABEL	12 :	13 :	14 :	15 :	16 :	17 :
1	1	PROP 1:1	2.5549E-01 :					

2 2 | PROP_2:2 | 8.0977E-01 : :

WORKSHOP 15 Weight Minimization of a Three Bar Truss

20. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

21. Proceed with the Reverse Translation process, that is, importing the **prob15.op2** results file into MSC.Patran. To do this, return to the **Analysis** form and proceed as follows:

♦ Analysis

Action:

Object:

Method:

Selected Results File:

OK	
Apply	

22. Plot Select Result Graph.

AXY Plot

Action:

Object:

Select Current XY Window:

Post/Unpost XY Windows:

Apply

Post

XY Window

Read Output 2

Result Entities

Translate

prob15.op2

DesignVariableHistory

DesignVariableHistory

Figure 2.1 - Design Variable History

Figure 2.2 - Objective Function History

Quit MSC.Patran when you have completed this exercise.

APPENDIX 1a

Modal Analysis of a Beam (SI Units)

Objectives

- Perform normal modes analysis of a cantilever beam.
- Submit the file for analysis in MSC.Nastran.
- Find the first three natural frequencies and mode shapes of the beam.

Model Description:

The goal of this example is to find the first 3 modes of a beam pinned at both ends.

Figure A-1a.1 below is a finite element representation of the beam. One end is contrained in all translations and the other is free to move in the X. Both ends are held in the X-rotation.

Table A-1a.1

Length	1.0 x 10 ³ mm
Elastic Modulus	2.0684 x 10 ⁵ MPa
Density	7.8334 x 10 ⁻⁹ N-sec ² /mm ⁴
Poisson's Ratio	0.32
Area	$5 \times 10^3 \mathrm{mm}^2$
I ₁	1.0417 x 10 ⁶ mm ⁴
I ₂	1.0 mm ⁴
Force	1 x 10 ⁷ N

Hand Calculations

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \right]^{1/2}$$

$$f_n = K_n \left(\frac{1}{2\pi} \left[\frac{2.0684 \times 10^5 (1.0417 \times 10^6)}{7.8334 \times 10^{-9} (5 \times 10^3) (1.0 \times 10^3)^4} \right]^{1/2} \right)$$
$$f_n = K_n (11.805)$$

From Theory

Mode	Kn	fn
1	9.87	116.51 Hz
2	39.5	466.28 Hz
3	88.8	1048.28 Hz

Suggested Exercise Steps

- Explicitly generate a finite element representation of the beam structure. (i.e., the grids (GRID) and element connectivities (CBAR) should be defined manually.)
- Define material (MAT1) and element (PBAR) properties.
- Apply the fixed boundary constraints (SPC1).
- Prepare the model for a normal modes analysis (SOL 103 and PARAMS).
 - PARAM, COUPMASS, 1
 - EIGRL (To select Lanczos)
- Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis.
- Review the results, specifically the eigenvalues.

APPENDIX 1a Modal Analysis of a Beam (SI Units)

ID SEMINAR, PROB1

CEND

BEGIN BULK

MSC.Nastran 102 Exercise Workbook

1	2	3	4	5	б	7	8	9	10

APPENDIX 1a Modal Analysis of a Beam (SI Units)

1	2	3	4	5	6	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 10, otherwise, proceed to step 2.
- 2. Create a new database named **probap1.db**.

File/New Database

New Database Name

probap1

OK

In the New Model Preference form set the following:

Tolerance

◆ Default

Analysis Code:

ОК

MSC/NASTRAN

3. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

4. Create a curve.

♦ Geometry

Action:

Object:

Method:

Vector Coordinates List

Origin Coordinates List

Apply

Create	
Curve	
XYZ	
<1000, 0, 0>	
[0, 0, 0]	

5. Create the finite element model and mesh the surface.

♦ Finite Elements

Action:		
Object:		

Type:

Global Edge Length

Curve List

Create	
Mesh	
Curve	
100	
Curve 1	

Apply

6. Create nodal displacements.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Translations <T1 T2 T3>

Rotations <R1 R2 R3>

OK

Select Application Region...

Geometry

Select Geometry Entities

OK Apply

New Set Name

Input Data...

Translations <T1 T2 T3>

Create	
Displacement	
Nodal	
disp1	

<0 0 0>	
<0,,>	

	Point 1	
--	---------	--

disp2	

< , 0 0>

MSC.Nastran 102 Exercise Workbook

7. Create a set of material properties for the bar.

♦ Materials

Action:

Object:

A-1a-12

Method:

Material Name

Input Properties...

Elastic Modulus =

Poisson Ratio =

Create
Isotropic
Manual Input
mat_1

2.0684E5	
0.32	

APPENDIX 1a Modal Analysis of a Beam (SI Units)

Density =
Apply
Cancel

7.	.8334	E-9	

8.	Define th	e bar	properties.
----	-----------	-------	-------------

♦ Properties

Action:

Dimension:

Type:

Property Set Name

Input Properties...

Material Name (Select from Material Property Sets box)

Bar Orientation

Area

[Inertia 1,1]

[Inertia 1,2]

Select Members

Create	
1D	
Beam	
bar	

m:mat_1

Coord 0.2	
5E3	
1.0417E6	
1.0	

Curve 1

Add	
Apply	

9. Now, you will generate the input file for analysis.

♦ Analysis	
Action:	Analyze
Object:	Entire Model
Method	Analysis Deck
Job Name	probap1
Solution Type	

An MSC.Nastran input file called **probap1.bdf** will be generated. The process of translating your model into an input file is called Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 11.

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from Table A-1a.1. The result should be similar to the output below.

10. MSC.Nastran Input File: probap1.dat

SOL 103							
TIME 600							
CEND							
TITLE = 1	Normal Mo	odes Exar	mple (SI	UNITS)			
SUBCASE 2	1						
METHO	D = 1						
SPC =	1						
VECTO	R(SORT1,	REAL)=ALI	L				
BEGIN BUI	LK						
PARAM	COUPMAS	S1					
EIGRL	1			3	0		
PBAR	1	1	5000.	1.04+6			
CBAR	1	1	1	2	0.	1.	0.
CBAR	2	1	2	3	0.	1.	0.
CBAR	3	1	3	4	0.	1.	0.
CBAR	4	1	4	5	0.	1.	0.
CBAR	5	1	5	б	0.	1.	0.
CBAR	б	1	б	7	0.	1.	0.
CBAR	7	1	7	8	0.	1.	0.
CBAR	8	1	8	9	0.	1.	0.
CBAR	9	1	9	10	0.	1.	0.
CBAR	10	1	10	11	0.	1.	0.
MAT1	1	206840.		.32	7.83-9		
GRID	1		0.	0.	0.		345
GRID	2		100.000	0.	0.		345
GRID	3		200.000	0.	0.		345
GRID	4		300.000	0.	0.		345
GRID	5		400.000	0.	0.		345
GRID	6		500.	0.	0.		345
GRID	7		600.000	0.	0.		345
GRID	8		700.000	0.	0.		345
GRID	9		800.000	0.	0.		345
GRID	10		900.000	0.	0.		345
GRID	11		1000.	0.	0.		345
SPC1	1	1234	1				
SPC1	1	234	11				
ENDDATA							

Submit the input file for analysis

- 11. Submit the input file to MSC.Nastran for analysis.
 - 11a. To submit the MSC.Patran **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran probap1.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 11b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran probap1 scr=yes. Monitor the run using the UNIX ps command.
- 12. When the run is completed, edit the **probap1.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 13. While still editing **probap1.f06**, search for the word:

E I G E N (spaces are necessary)

What are the first three modes?

1st =____Hz

2nd = _____Hz

3rd = _____Hz

Comparison of Results

14. Compare the results obtained in the **.f06** file with the following results:

owing results.

REAL EIGENVALUES

MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED
NO.	ORDER				MASS	STIFFNESS
1	1	5.352166E+05	7.315850E+02	1.164354E+02	1.00000E+00	5.352166E+05
2	2	8.561551E+06	2.926013E+03	4.656894E+0	1.00000E+00	8.561551E+06
3	3	4.329484E+07	6.579882E+03	1.047221E+03	1.000000E+00	4.329484E+07

15. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

16. Proceed with the Reverse Translation process, that is importing the **probap1.op2** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method

-
Result Entities
Translate

Read Output2

Select Results File...

Select Results File

probap1.op2	
-------------	--

Create

OK	

Apply

When the translation is complete bring up the **Results** form.

♦ Results

Action:

Object:

Select Results Cases

Select Deformation Result

Deformation	
Default, Mode 1:Freq=	=116.44
Eigenvectors, Translat	ional

Apply

To reset the graphics, click on this icon:

You can go back and select any *Results Case, Fringe Results or Deformation Results* you are interested in.

Quit MSC.Patran when you are finished with this exercise.

- **Objectives**
- Analyze a stiffened beam for normal modes.
- Produce a MSC.Nastran input file that represent beam and load
- Submit for analysis.
- Find normal modes (natural frequencies).

Appendix 1b Normal Modes with Differential Stiffness (SI

Model Description:

The goal of this example is to analyze a stiffened model. In this case, the beam from Appendix 1a. with a 1×10^7 N force applied.

This is no longer a simple normal modes analysis. Instead we will be using a nonlinear static solution (SOL 106) with (PARAM, NMLOOP and METHOD and EIGRL).

Figure A-1b.1 below is a finite element representation of the beam. One end is pinned in 3 translations and one rotation. The other is pinned in 2 translations and one rotation with a 1×10^7 N force applied.

Figure A-1b.1-Grid Coordinates and Element Connectivities

(1234)																	(234)
▶ >>% 1234_1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	±±±0.010 1x10 ⁷ N

heoretical Solution

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \left(1 + \frac{1}{Kr} \frac{Pl^2}{EI} \right) \right]^{1/2}$$

For Mode 1, Kr =9.87

$$fn = \frac{9.87}{2\pi} \left[\frac{(2.0684 \times 10^5)(1.0417 \times 10^6)}{(7.8334 \times 10^{-9})(5 \times 10^3)(1.0 \times 10^3)^4} x \left(1 + \frac{1}{9.87} \frac{(1 \times 10^7)(1 \times 10^3)^2}{(2.0684 \times 10^5)(1.0417 \times 10^6)} \right) \right]^{1/2}$$

$$f_n = 278.22 Hz$$

For Static Load

$$\Delta = \frac{PL}{AE}$$

$$\Delta = \frac{(1 \times 10^{7})(1 \times 10^{3})}{(5 \times 10^{3})(2.0684 \times 10^{5})}$$
$$\Delta = 9.67mm$$

Table A-1b.1

Length	1.0 x 10 ³ mm
Elastic Modulus	2.0684 x 10 ⁵ MPa
Density	7.8334 x 10 ⁻⁹ N-sec ² /mm ⁴
Poisson's Ratio	0.32
Area	$5 \times 10^3 \text{ mm}^2$
I ₁	1.0417 x 10 ⁶ mm ⁴
I ₂	1.0 mm ⁴
Force	1 x 10 ⁷ N

Suggested Exercise Steps

- Open database created in Problem 1a in order to modify it, adding a load and reanalyze.
- Create 1×10^7 N force applied at one end (FORCE).
- Make sure analysis is set to nonlinear static (SOL 106).
- Prepare nonlinear analysis to also analyze for normal mode (PARAM NMLOOP, EIGRL, PARAM LGDISP, NLPARM).
- Review the results, specifically the eigenvectors.

ID SEMINAR, PROB1

CEND

BEGIN BULK

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	б	7	8	9	10
---	---	---	---	---	---	---	---	---	----

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 6, otherwise, proceed to step 2.
- 2. Open database created in Appendix Problem 1a named probap1.db.

File/Open Database

Existing Database Name

probap1

OK

3. Activate the entity labels by selecting the Show Labels icon on the toolbar.

Show Labels

Г

4. Create force.

♦ Loads/BCs

Action:

Object:

Type:

New Set Name

Input Data...

Force <*F1 F2 F3*>

OK

Select Application Region...

Select Geometry Entities

Create	
Force	
Nodal	
pull	

٦

<1e7, ,	, >

Point 2

OK

Apply

5. Now, you will generate the input file for analysis.

♦ Analysis

Action:

Object:

Method

Job Name

Solution Type...

Solution Type:

Solution Parameters ...

<deselect Automatic Constraints>

Mass Calculation:

Data Deck Echo:

OK

OK

Direct Text Input...

- Case Control Section
- Bulk Data Section

OK

Subcase Create...

Available Subcases

Subcase Parameters...

Number of Load Increments =

Apply

Analyze

Entire Model

Analysis Deck

probap1b

◆ NONLINEAR STATIC

Automatic Contraints

Coupled None

METHOD = 10

PARAM, NMLOOP, 5 EIGRL, 10, , , 3

Default

5

An MSC.Nastran input file called **probap1b.bdf** will be generated. The process of translating your model into an input file is called Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to step 7.

Appendix 1b Normal Modes with Differential Stiffness (SI

Generating an input file for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from Table A-1b.1. The result should be similar to the output below.

6. MSC.Nastran Input File: probap1b.dat

```
SOL 106
TIME 600
CEND
$
TITLT = NORMAL MODES WITH DIFFERENTIAL STIFFNESS
METHOD = 10
SUBCASE 1
   NLPARM = 1
   SPC = 1
   LOAD = 1
   DISPLACEMENT (SORT1, REAL) = ALL
$
BEGIN BULK
PARAM
         COUPMASS 1
PARAM
          LGDISP
                    1
NLPARM
          1
                    5
                                       AUTO
                                                 5
                                                           25
                                                                    ΡW
                                                                              NO
                                                                                       +
                                                                                               Α
        Α
                    .001
                              1.-7
+
PARAM, NMLOOP, 5
$
EIGRL, 10, , , 3
PBAR
          1
                    1
                              5000.
                                       1.04+6
                                       2
                                                 0.
                                                           1.
                                                                    0.
CBAR
          1
                    1
                              1
           2
                              2
                                       3
                                                 0.
                                                           1.
CBAR
                    1
                                                                    0.
CBAR
           3
                    1
                              3
                                       4
                                                 0.
                                                           1.
                                                                    0.
CBAR
           4
                    1
                              4
                                       5
                                                 0.
                                                           1.
                                                                    0.
           5
                              5
                                       б
CBAR
                    1
                                                 0.
                                                           1.
                                                                    0.
                                       7
CBAR
           6
                    1
                              6
                                                 0.
                                                           1.
                                                                    0.
CBAR
           7
                    1
                              7
                                       8
                                                 0.
                                                           1.
                                                                    0.
           8
                              8
                                       9
                                                 0.
                                                           1.
CBAR
                    1
                                                                    0.
           9
                    1
                              9
                                                 0.
                                                           1.
CBAR
                                       10
                                                                    Ο.
CBAR
          10
                    1
                              10
                                       11
                                                 0.
                                                           1.
                                                                    0.
$
MAT1
                    206840.
                                        .32
                                                 7.83-9
           1
          1
                                       0.
                                                 0.
                                                                    345
GRID
                              0.
GRID
           2
                              100.000 0.
                                                 0.
                                                                    345
```

MSC.Nastran 102 Exercise Workbook

GRID	3		200.000	0.	0.		345
GRID	4		300.000	0.	0.		345
GRID	5		400.000	0.	0.		345
GRID	б		500.	0.	0.		345
GRID	7		600.000	0.	0.		345
GRID	8		700.000	0.	0.		345
GRID	9		800.000	0.	0.		345
GRID	10		900.000	0.	0.		345
GRID	11		1000.	0.	0.		345
SPC1	1	1234	1				
SPC1	1	234	11				
FORCE	1	11	0	1.+7	1.	0.	0.
ENDDATA							

Submit the input file for analysis

- 7. Submit the input file to MSC.Nastran for analysis.
 - 7a. To submit the MSC.Patran .bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran probap1b.bdf scr=yes. Monitor the run using the UNIX ps command.
 - 7b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran probap1b scr=yes. Monitor the run using the UNIX ps command.
- 8. When the run is completed, edit the **probap1b.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 9. While still editing **probap1b.f06**, search for the word:

E I G E N (spaces are necessary)

What are the first three natural frequencies?

 $1st = __Hz$

2nd = _____Hz

3rd = _____Hz

Comparison of Results

10. Compare the results obtained in the **.f06** file with the following results:

	3
	es
	Ë
	s
GENERAI	L
STIFF	Ś
01111	
3.05620]
1 8649	2
1.0019.	-
6.5179	5

MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERAL
NO.	ORDER				MASS	STIFFN
1	1	3.056203E+06	1.748200E+03	2.782346E+02	1.000000E+00	3.05620
2	2	1.864932E+07	4.318486E+03	6.873084E+02	1.000000E+00	1.86493
3	3	6.517956E+07	8.073386E+03	1.284919E+03	1.000000E+00	6.51795

11. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step.

12. Proceed with the Reverse Translation process, that is importing the **probap1b.op2** results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows:

♦ Analysis

Action:

Object:

Method

Select Results File...

Select Results File

Read Output2 Result Entities Translate

probap1b.op2

Create

Apply

OK

When the translation is complete bring up the *Results* form.

♦ Results

Action:

Object:

Select Results Cases

Select Deformation Result

Deformation Default, Mode 1:Freq=278.23 Eigenvectors, Translational

Apply

To reset the graphics, click on this icon:

Reset Graphics

You can go back and select any Results Case, Fringe Results or Deformation Results you are interested in.

Quit MSC.Patran when you are finished with this exercise.

APPENDIX 1c

Normal Modes with Differential Stiffness, Using STATSUB

Objectives:

- Perform normal modes analysis of a simply supported beam with differential stiffness.
- Utilize the NASTRAN STATSUB feature.
- Find the first three natural frequencies and mode shapes of the beam.

Model Description:

The goal of this example is to determine normal modes with differential stiffness by using the NASTRAN STATSUB feature.

Figure A-1c.1 below is a finite element representation of the beam. One end is constrained in all translation and the other is free to move in the X. Both ends are held in the X-rotation.

Table A-1c.1

Length	1.0 x 10 ³ mm
Elastic Modulus	2.0684 x 10 ⁵ MPa
Density	7.8334 x 10 ⁻⁹ N-sec ² /mm ⁴
Poisson's Ratio	0.32
Area	$5 \text{ x } 10^3 \text{ mm}^2$
I ₁	1.0417 x 10 ⁶ mm ⁴
I ₂	1.0 mm ⁴
Force	1 x 10 ⁷ N

Theoretical Solution

$$f_n = \frac{K_n}{2\pi} \left[\frac{EIg}{Wl^4} \left(1 + \frac{1}{Kr} \frac{Pl^2}{EI} \right) \right]^{1/2}$$

For Mode 1, Kr =9.87

$$fn = \frac{9.87}{2\pi} \left[\frac{(2.0684 \times 10^5)(1.0417 \times 10^6)}{(7.8334 \times 10^{-9})(5 \times 10^3)(1.0 \times 10^3)^4} x \left(1 + \frac{1}{9.87} \frac{(1 \times 10^7)(1 \times 10^3)^2}{(2.0684 \times 10^5)(1.0417 \times 10^6)} \right) \right]^{1/2}$$

$$f_n = 278.22 Hz$$

For Static Load

$$\Delta = \frac{PL}{AE}$$

$$\Delta = \frac{(1 \times 10^7)(1 \times 10^3)}{(5 \times 10^3)(2.0684 \times 10^5)}$$

$$\Delta = 9.67 nm$$

A-1c-5

APPENDIX 1C

Suggested Exercise Steps

- Explicitly generate a finite element representation of the beam structure (i.e., the grids (GRID) and element connectivities (CBEAM) should be defined manually).
- Define material (MAT1) and element (PBAR) properties.
- Apply the fixed boundary constraints (SPC1).
- Prepare the model for a normal modes analysis (SOL 103 and PARAMs).
 - PARAM WTMASS 0.00259
 - PARAM COUPMASS 1
 - EIGRL (To select Lanczos)
- Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis.
- Review the results, specifically the eigenvalues.

CEND

ID SEMINAR, PROB1

BEGIN BULK

1	2	3	4	5	б	7	8	9	10

APPENDIX 1C

1	2	3	4	5	б	7	8	9	10

ENDDATA

Exercise Procedure:

- 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 10, otherwise, proceed to Step 2.
- 2. Create a new database named **probap1.db**.

File/Open Database

New 1	Database	Name
-------	----------	------

probap1

OK

3. Now, you will generate the initial input file with tensile load.

♦ Analysis

Action:

Object:

Method

Job Name

Solution Type...

Solution Type:

Solution Parameters...

(Deselect Automatic Constraints.)

Mass Calculation:

Data Deck Echo:

OK

Direct Text Input...

◆ Case Control Section

Clear

• Bulk Data Section

Analyze Entire Model Analysis Deck

Anarysis De

probap1c

♦ Linear Static

□ Automatic Constraints

Coupled	
None	
rione	

Clear	
OK	
Apply	

An MSC.Nastran input file called **probap1c.bdf** will be generated.

Generating an Input File for MSC.Nastran Users:

MSC.Nastran users can generate an input file using the data from Table A-1c.1. The result should be similar to the output below. This is only the starting point.

4. MSC.Nastran input file: probap1c.bdf

probap1c.bdf

A-1c-12

```
SOL 101
CEND
ECHO = NONE
SUBCASE 1
   SPC = 2
   LOAD = 2
   DISPLACEMENT (SORT1, REAL) = ALL
   SPCFORCES(SORT1,REAL)=ALL
   STRESS(SORT1,REAL,VONMISES,BILIN)=ALL
BEGIN BULK
                    -1
PARAM
          POST
PARAM
          PATVER
                    3.
          AUTOSPC NO
PARAM
                              5000.
                                        1.041+6 1.
PBAR
           1
                    1
                                        2
                                                  0.
                                                           1.
                                                                     0.
           1
                    1
                              1
CBAR
           2
                    1
                              2
                                        3
                                                           1.
                                                                     0.
CBAR
                                                  0.
                    1
                              3
                                        4
CBAR
           3
                                                  0.
                                                           1.
                                                                     0.
           4
                    1
                              4
                                        5
                                                  0.
                                                           1.
                                                                     0.
CBAR
                              5
CBAR
           5
                    1
                                        6
                                                  0.
                                                           1.
                                                                     0.
                                        7
           б
                    1
                              б
                                                  0.
                                                           1.
                                                                     0.
CBAR
                              7
           7
                    1
                                        8
CBAR
                                                  0.
                                                           1.
                                                                     0.
           8
                    1
                              8
                                        9
                                                  0.
                                                           1.
                                                                     0.
CBAR
CBAR
           9
                    1
                              9
                                        10
                                                  0.
                                                           1.
                                                                     0.
                              10
                                        11
                                                  0.
CBAR
           10
                    1
                                                           1.
                                                                     0.
           1
                    206840.
                                        .32
                                                  7.833-9
MAT1
                                        0.
           1
                              0.
                                                  0.
GRID
           2
                              100.000 0.
GRID
                                                  0.
           3
                              200.000 0.
                                                  0.
GRID
                              300.000 0.
           4
                                                  0.
GRID
GRID
           5
                              400.000 0.
                                                  0.
           б
                              500.
                                        0.
                                                  0.
GRID
           7
GRID
                              600.000 0.
                                                  0.
           8
                              700.000 0.
                                                  0.
GRID
GRID
           9
                              800.000 0.
                                                  0.
                              900.000 0.
           10
                                                  0.
GRID
           11
                              1000.
                                        0.
                                                  0.
GRID
           2
                    1
                              3
                                        4
SPCADD
LOAD
           2
                    1.
                              1.
                                        1
           1
                    1234
                              1
SPC1
SPC1
           3
                    234
                              11
SPC1
           4
                    345
                              1
                                        THRU
                                                  11
           1
                    11
                              0
                                        1.+7
                                                  1.
                                                           Ο.
                                                                     0.
FORCE
ENDDATA 052ec265
```

MSC.Nastran Advanced Workbook

Modification of the Input File:

Before submitting the input file for analysis, modifications must be made to it in order to perform normal mode analysis with differential stiffness. Add in the appropriate commands within the **.bdf** file by doing the following:

- 5. Open the input file, **probap1c.bdf** with the use of a text editor or any means available.
 - 5a. Locate and **REPLACE** the text SOL 101 with the following:

SOL 103

5b. **ADD** a new subcase after the SUBCASE 1 section and before BEGIN BULK text line:

```
SUBCASE 2
STATSUB = 1
METHOD = 1
SPC = 2
VECTOR = ALL
```

5c. **ADD** the following after the BEGIN BULK text line:

EIGRL, 1, , , 3

Save the changes to the **.bdf** file and close the text editor. You are now ready to proceed with the submitting the input file for analysis.

Submitting the Input File for Analysis:

- 6. Submit the input file to MSC.Nastran for analysis.
 - 6a. To submit the MSC.Patran **.bdf** file for analysis, find an available UNIX shell window. At the command prompt enter: **nastran probap1c.bdf scr=yes**. Monitor the run using the UNIX **ps** command.
 - 6b. To submit the MSC.Nastran .dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran probap1c.dat scr=yes. Monitor the run using the UNIX ps command.
- 7. When the run is completed, edit the **probap1c.f06** file and search for the word **FATAL**. If no matches exist, search for the word **WARNING**. Determine whether existing WARNING messages indicate modeling errors.
- 8. While still editing **probap1c.f06**, search for the word:

R E A L (spaces are necessary)

What are the first three modes?

2nd = _____Hz

3rd = _____Hz

Comparison of Results:

9. Compare the results obtained in the .f06 file with the following results:

MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERA
NO.	ORDER				MASS	STIF
1	1	3.055547E+06	1.748012E+03	2.782048E+02	1.000000E+00	3.05554
2	2	1.865041E+07	4.318612E+03	6.873285E+02	1.000000E+00	1.86504
3	3	6.515460E+07	8.071840E+03	1.284673E+03	1.00000E+00	6.51546

MSC.Nastran Advanced Workbook

A-1c-15

Quit MSC.Patran when you are finished with this exercise.

2H 74247	Е эроМ
ZH EE.788	2 эроМ
zH 02.872	І эроМ