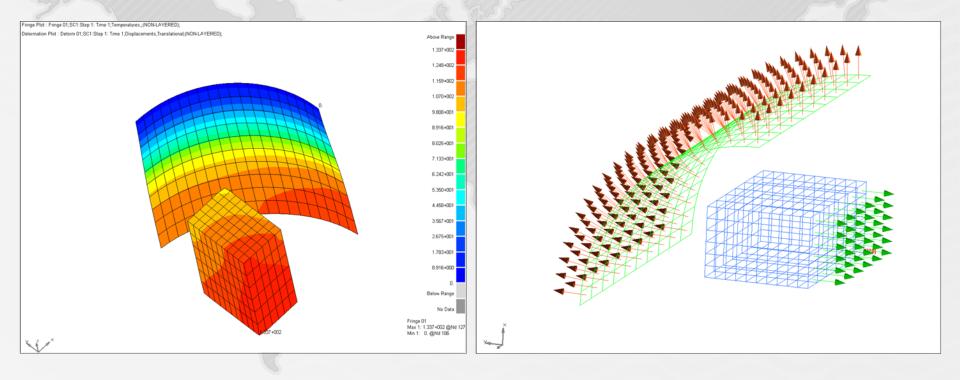


MSC.Software Confidential

MD NASTRAN 2010 THERMAL ENHANCEMENT

Daniel Chu

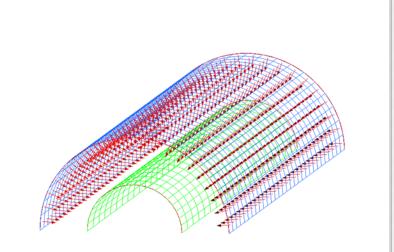

SEP 23, 2010 Glendale, CA

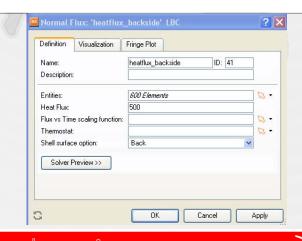
MD2010 thermal capabilities

1 36 B.C.		HEMI- CUBE View factor	Composite 2D and 3D heat transfer	Thermal Contact with BCTABLE	Linear and quadratic thermal gradient through shell	Reflection Matrix in Radiation matrix decomposit ion	Adaptive time stepping using NLSTEP
	MDR3	Yes	Yes			Yes	
	MD2010			Yes	Yes		Yes
		- Mar-			NG V	Nos	
		Mesh- Mapping from different thermal and structure mesh	Multi- physics thermal structure interaction	21 new advanced element types	Axi- symmetric CQUADX and CTRIAX on the x-y plane		
	MDR3			Yes			
	MD2010	Yes	Yes		Yes		
MS	C SimEnterprise™	o				∘ 2	MSCSSoftware

What is new in MD2010 thermal capability

1. Added true thermal contact, near contact, and radiation across gap using the entries BCTABLE and BCBODY.

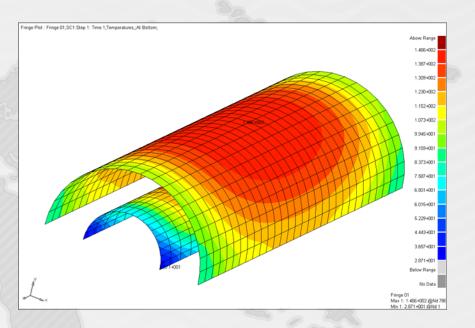



Shell with temperature with linear or quadratic temp distribution

- NLMOPTS, TEMPP, LINE or QUAD
- PSHELL 1 2 0.1 2
- pshln1,1,2,,,ish
- Thermal boundary conditions can be applied on the top or bottom of shell elements by the use of CHBDYE bulk data entries.
- Example:

CHBDYE,3001,401,6 QBDY3,6,500.0,,3001

- This CHBDYE element is referenced by CQUAD4 Element 401 with SIDE ID=6 that is the Bottom side of the element
- A heat flux and convection can then be applied to this CHBDYE surface. Since grids had only a single degree of freedom previously, it did not matter where the heat flux was applied. However now that, MD2010 has multiple degrees of freedom per grid, the effect of thermal gradients can be captured.



Software

Shell temp with temperature gradients

Boundary conditions:

- Heat flux, (500 watt/m²) is applied on the entire outer cylinder.
- Enclosure radiation is exchanged from the inner cylinder to the outer cylinder.
- Radiation loss goes space at negative 273.15°C
- Sigma is 5.67e⁻⁸ watt/m²K⁴
- Offset temperature is 273.15°C, the input temperature is in Celsius.

Shell with temp gradients

Generic Solver Parameter Solution Control Parameters Solution Control Parameters Solution Parameters Absolute Temperature Scale: Analysis Options Model Parameters Stefan-Boltzmann Constant: 5.6696E-8 WATTS/M2/K4 (Exper)	Parameter Set Editor: Solver Co		Top 141.6 77.78	Middle 144.1 80.56	Bottom 146.6 83.15			.0.00 .0.00	
Direct text Input (FMS) Thermal Shell Elements Direct text Input (ECS) Temperature Distribution: Direct text Input (BULK) Show mapping of user supplied and internally generated grids Heat Transfer SPC: SPC applied instantaneously Lagrange Rigid Elements and Contact Analysis Scale Factor:	Solution Control Parameters Solution Parameters Analysis Options Model Parameters Heat Transfer Parameters Initial Conditions Initial Conditions Initial Conditions Initial Conditions Initial Contact Definition Iterative Solver Method Selection Contact Generic Parameters Contact Generic Parameters Contact Separation Parameters Contact Separation Parameters Contact Separation Parameters Contact Friction Parameters Contact Parameters C	Absolute Temperature Scale: Stefan-Boltzmann Constant: View Factor Calculation Method: Number of Pixels: Cutoff fraction below which view factors Fraction below which view factors to be	treated explicitly: on matrix	5.6696E-8 WA	TTS/M2/K4 (Exper) 🛛 👻	Freqs Plat: Freqs 01,501 Step 1	Terre 1,Temperatures_At Bottom;		
	Direct text Input (FMS) Direct text Input (ECS) Direct text Input (CCS)	Temperature Distribution: Show mapping of user supplied and Heat Transfer SPC: Lagrange Rigid Elements and Contact A Scale Factor:		ds					

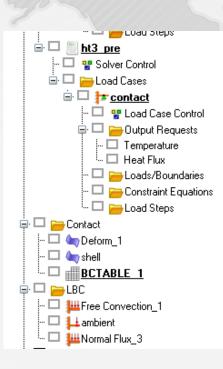
0

MSC Software

SIMX – Heat Transfer GUI

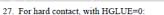
MSC SimXpert Structures	MSC SimXpert Structures [C:/simx/shell_solid_preprocess.SimXpert] - [Main Window]								
💶 File Edit View Tools Wind	🔟 File Edit View Tools Window Help								
📑 📑 🔚 🗠 e	(• 🛃 🔍 • 🤍 💭 • 🔗 • 💗 • 💫) • 🕒 🛞 🖉 😙 • 🕿 • 🕿 🛸 📢 • 👯 • /							
Geometry Meshing Qu	ality Nodes/Elements Materials and Properties LBCs	Tables Assemble User Services Results Templates							
Fixed Image: Multi Point Image: Pin Image: Pine Delay Image: General Image: Phase Lead	Huilf Force Accelerati 1D Thermal I OpenFSI Moment I Nonlinear 2D Thermal C Rotationa 0D Thermal I Total Load	Running Image: Temperat Image: Normal Flux image: Encl Rad Image: Total Heat Image: Primitives Image: Pressure Image: Normal Flux image: Encl Rad Image: Total Heat Image: Primitives Image: Axisymme Image: Normal Flux image: Primitives Image: Axisymme Image: Primitives Image: Axisymme Image: Primitives Image: Axisymme Image: Primitives Image: Primitives Image: Primatives Image: Primitives							
Constraints	Loads	Pressure Heat Transfer							

0


MSC Software

MSC SimEnterprise™

MSC Software

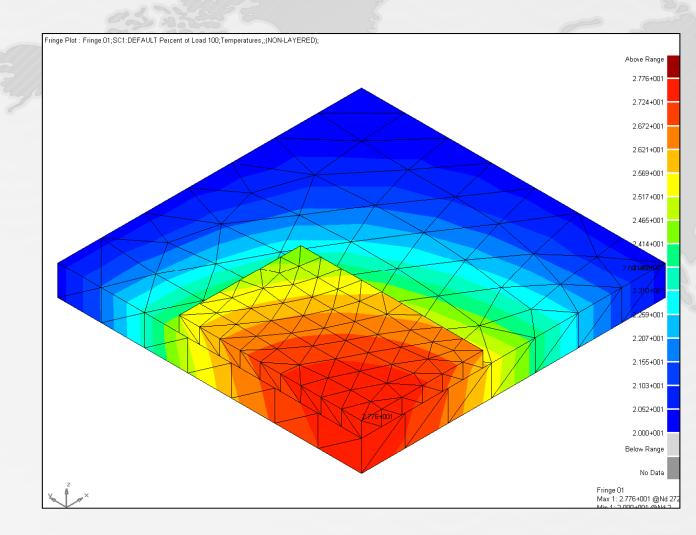

8

SIMX – Model Browser

Thermal contact GUI

lame: B	CTABLE_1				
<< Basic	Structural		 Thermal 	 Thermo Structural 	
lobal Slave Option Flag:					¥
obal Master Option Flag:					× 📖
obal Contact Detection:					*
Matrix View List View					
Touch All		Glue All	Deactivate All	Deact. Diagonal	Copy Cell
1		2			
1-Def-Deform_"		т			
2-Def-shell T					
uching (Slave) Body:	Deform_1				
	shell				
tance Tolerance:					
ividual Contact Detection					~
is Factor:	0.9				
tructural Thermal					
					0
istance Tolerance Table:	erance:	5			<i>a</i>
istance Tolerance Table: ear Contact Distance Tole		5			
istance Tolerance Table: ear Contact Distance Tole ear Contact Distance Tole		5			
istance Tolerance Table: ear Contact Distance Tole ear Contact Distance Tole		5			
istance Tolerance Table: ear Contact Distance Tolk ear Contact Distance Tolk eat Transfer Coefficient:	erance Table:				
istance Tolerance Table: ear Contact Distance Tole ear Contact Distance Tole eat Transfer Coefficient: ear Contact Heat Transfer	erance Table: r Coefficient:				a a a
istance Tolerance Table: ear Contact Distance Tole ear Contact Distance Tole eat Transfer Coefficient: ear Contact Heat Transfer	erance Table: r Coefficient:				a a
istance Tolerance Table: ear Contact Distance Tole ear Contact Distance Tole eat Transfer Coefficient: ear Contact Heat Transfer atural Convection Coeffici	erance Table: r Coefficient: ient:				a a a
istance Tolerance Table: ear Contact Distance Tole ear Contact Distance Tole eat Transfer Coefficient: ear Contact Heat Transfe atural Convection Coeffici atural Convection Expone	erance Table: r Coefficient: ient:				a a a a
istance Tolerance Table: ear Contact Distance Tole ear Contact Distance Tole ear Contact Distance Tole ear Contact Heat Transfer atural Convection Coeffici atural Convection Expone urface Emissivity:	erance Table: r Coefficient: ent: int:				a a a a a a
istance Tolerance Table: lear Contact Distance Tolk lear Contact Distance Tolk lear Contact Distance Tolk lear Contact Heat Transfer latural Convection Coeffici latural Convection Expone urface Emissivity.	erance Table: r Coefficient: ent: int:				a a a a a a
listance Tolerance Table: Lear Contact Distance Tole dear Contact Distance Tole lear Contact Distance Tole lear Contact Heat Transfer Hatural Convection Coeffici Natural Convection Expone liufface Emissivity. Distance Dependent Conve	erance Table: r Coefficient: ient: ection Coeff:				a a a
Distance Tolerance Table: Near Contact Distance Tole dear Contact Distance Tole dear Contact Distance Tole dear Contact Heat Transfer Natural Convection Coeffici Natural Convection Expone Surface Emissivity: Distance Dependent Conve Nonlinear Heat Transfer Co	erance Table: r Coefficient: ient: ection Coeff: efficient:				a a a a a a a a a a a a a a a a a a a
Distance Tolerance Table: Near Contact Distance Tole dear Contact Distance Tole dear Contact Distance Tole Hear Transfer Coefficient: Natural Convection Coeffici Natural Convection Expone Surface Emissivity: Distance Dependent Conve	erance Table: r Coefficient: ient: ection Coeff: efficient:			○ 1Activate	a a a a a a a

The convective heat flow per unit area over the two interfaces is given by:


 $q = HCT \cdot (T_A - T_B)$

where T_A is the contacting grid temperature and T_B is the face temperature in the contact point in case of a meshed body or the T_{BODT} temperature in case of a rigid geometry.

28. For near contact:

$$\begin{split} q &= HCV \cdot (T_A - T_B) + \\ HNC \cdot (T_A - T_B)^{BNC} + \\ HNL \cdot (T_A^{BNL} - T_B^{BNL}) + \\ \sigma \cdot EMISS \cdot (T_A^d - T_B^d) + \\ \left[HCT \cdot \left(1 - \frac{dist}{DONEAR} \right) + HBL \cdot \frac{dist}{DQNEAR} \right] \cdot (T_A \cdot T_B) \end{split}$$

Thermal contact with glue options

<u>ا مر م</u>

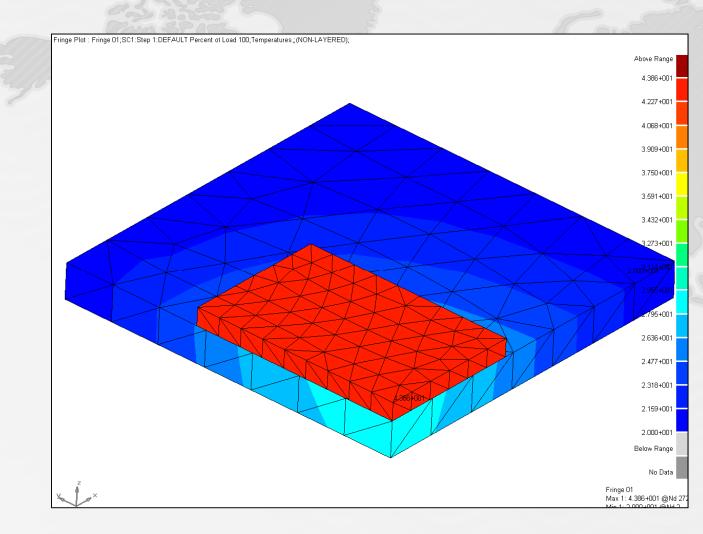
Temperatures are continues across the interface due to contact.

MSC Software

Set thermal glue=1

• The HGLUE field on Field 6 behind the keyword HHHB can be set to 1. This will glue two parts with dissimilar mesh together with no temperature drop between the two parts.

NASTRAN	test dec	k: gap_g	glue.dat					
BCTABLE	9			1				
	SLAVE	111	0.	0.	0.	0.	0	
		0	0	0	0	20.0	0	
		FBSH		.9				
		HHHB	0.0	0.	0.	0.	0.	0.
					1			
	MASTERS	112						


MSC X Software

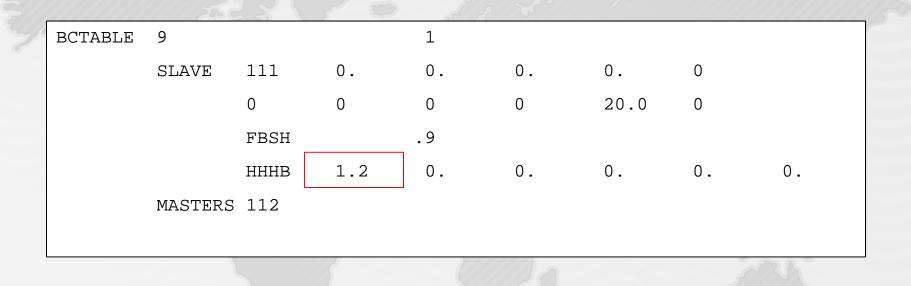
0.

SOL 400 thermal contact

```
SOL 400
CEND
ANALYSIS = HSTAT
TITLE = MSC.Nastran job created on 28-Sep-05 at 16:03:52
ECHO = NONE
TEMPERATURE(INITIAL) = 1
 SUBCASE 1
 BCONTACT=9
   NLPARM = 1
   SPC = 1
   LOAD = 2
   THERMAL(SORT1, PRINT) = ALL
   FLUX(SORT1,PRINT)=ALL
BEGIN BULK
bsurf, 101, 314, thru, 639
bsurf, 102, 1,thru,313
bcbody, 111, , heat, 101
, heat, 0., 0., 0., 0., 0., 0., 4
, , 0., 0., 0.
bcbody, 112, , heat, 102
, heat, 0., 0., 0., 0., 0., 0., 4
    , 0., 0., 0.
BCTABLE 9
                                 1
                                 0.
         SLAVE
               111
                         0.
                                         0.
                                                 0.
                                                         0
                                 0
                 0
                                                 20.0
                         0
                                         0
                                                         0
                 FBSH
                                 .9
                 HHHB
                         0.0
                                 Ο.
                                         0.
                                                 0.
                                                         Ο.
                                         1
         MASTERS 112
```

Touched contact (contact resistance)

HTC=1.2

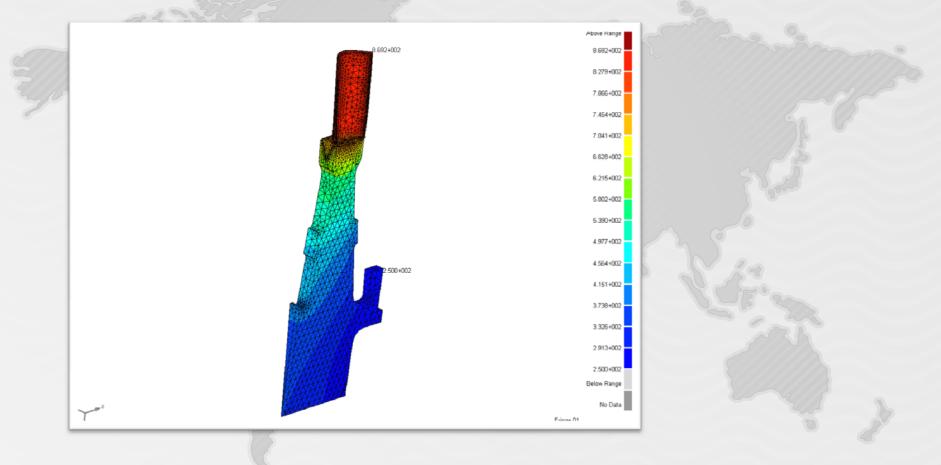

There is a temperature drop between the two parts

This option is used to simulate grease or contact resistance between two parts

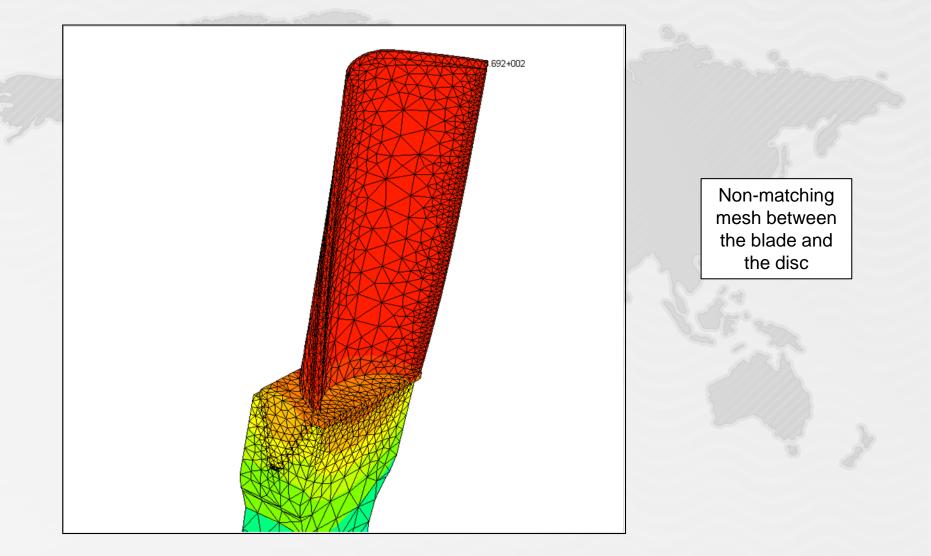
MSCXSoftware

Touched contact

• We have a value of 1.2 in the field HTC that connect the two parts.

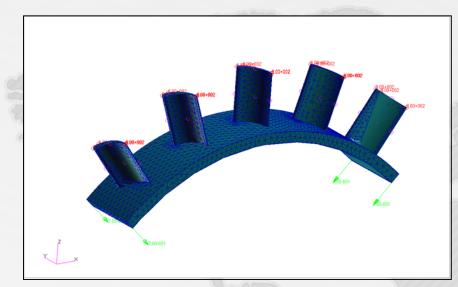

Thermal contact GUI (PATRAN and SIMX)

Contact Table								Sar Ba	
arameters Defining Contact Between Bodies		Global Contact Detection: Default(by bo	dy #) 🔻	1	BCTABLE: 'BCTABLE_		-	I	?
View Table Only				53	Cell Mode:	🔘 Edit	 View 	Copy Cell	
	Glue All Deactivate A	ll Import/Export	Select Existing		1	2			
Contact Matrix				3	1-Def-DEFORM_11	Т			
Body	ype Release	1	2	30	2-Def-DEFORM_112 T				
1-bottom Deform	able N		Т						
2-top Deform	able N	Т							
				2					
					Touching (Slave) Body:	DEFORM_111			
					Touched (Master) Body:	DEFORM_112			
			~		Individual Contact Detection:	Double Sided		~	
			>		Distance Tolerance:	0			
Specific Parameters for Body Pairs					Bias Factor:	0.9			
	iched Body (Master)	Distance Tolerance (ERROR):	0.	5	Structural Thermal				
top		Bias Factor (BIAS):	0.9						
		Near Contact Dist. Tol. (DQNEAR):	0.		Distance Tolerance Table:				2 -
	×	Analysis Properties:	Thermal 🔻		Near Contact Distance Tole				
orce Removal (BCMOVE):					Near Contact Distance Tole				2.
Immediate C Gradual		Heat Transfer Coeff (HTC):	0.		Contact Heat Transfer Coef	ficient: 0.			2 -
ontact Detection (ISEARCH):		Near Contact HT Coeff (HCV): Natural Convection Coeff (HNC):	0.		Near Field Behavior				
C Automatic C 1st->2nd		Natural Convection Exp (BNC):	0.		Convection Coefficient:	0.			2 -
Double Sided C 2nd->1st		Surface Emissivity (EMISS):	0.		Natural Convection Coeffici	ent: 0.			2 -
		Distance Dep. Conv. Coeff (HBL):	0.		Natural Convection Expone	nt: O.		· · · · · · · · · · · · · · · · · · ·	□ - □
		1			Surface Emissivity:	0.			₽ - 2
ect a Field					Distance Dependent Conve	ection Coeff: 0.		1	5-
			~		Nonlinear Convection Coeff	icient:		1	3-
					Nonlinear Convection Expo	nent:		1	3-
7			~		Thermal Glue:		olver Default 🔿 0:Deactivate	 1:Activate 	
<u>v</u>			2		rnonia aluo.	0.50		- I.Activate	
		-							
ок	Defaults	Canc	el		3)K Cancel .	Apply


0

MSC Software

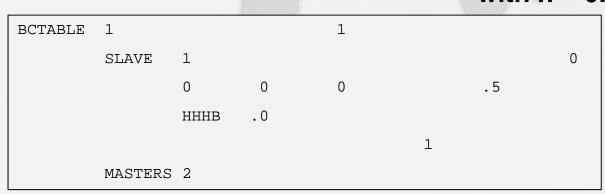
Thermal contact for turbine blade –disc interface



Detailed view of the contact surface

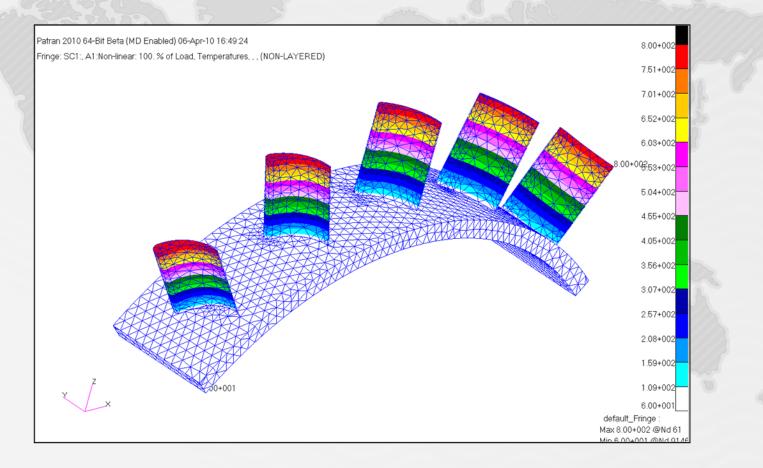
MSC Software

Thermal contact with multiple parts



- Tet10 mesh for blades and base.
- Blades and base are meshed individually. The mesh is not congruent at the interface.
- Thermal contact using glued thermal contact option-perfect contact.
- Enforced temperature of 800°F on top of the blades.

18


Software

Convection to ambient at 60°F with h = 0.1

Thermal contact with multiple parts

NASTRAN test deck: large_contact1_glue.dat

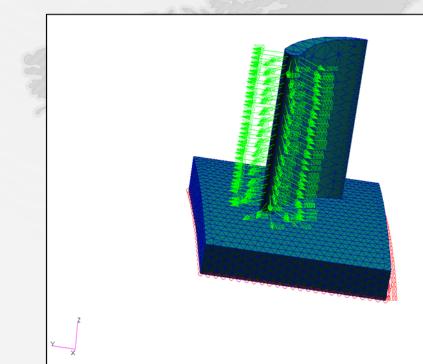
Restart from thermal NASTRAN database into a fine structure mesh model

MDR4 SOL400 now has the capability to interpolate temperature from a coarse mesh thermal model into a fine mesh structure model using a restart from heat transfer run into a structure run.

The procedure is:

- 1. Start with two Nastran Decks. The deck is the thermal model. The second model is the structural model.
- 2. Run the thermal model, and save the NASTRAN database by specifying SCR=NO in the run.
- 3. The structural model is then run using a restart pointing to the same NASTRAN database that will interpolate the temperature in the fine mesh model .
- 4. The Case Control Command temp(load,hsubcase=1)= 9 will then use the thermal run from the Subcase 1 as the temperature load for a thermal stress analysis.

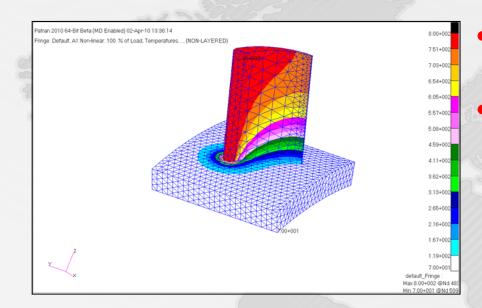
Example decks:


- NASTRAN thermal model: map_heat1_m.dat
- NASTRAN structure model: map_structure1b_m.dat

SEE URL example:

http://www.si.mscsoftware.com/nsp/SampleProb/heat/prob238/matching_mesh_thermal4.htm

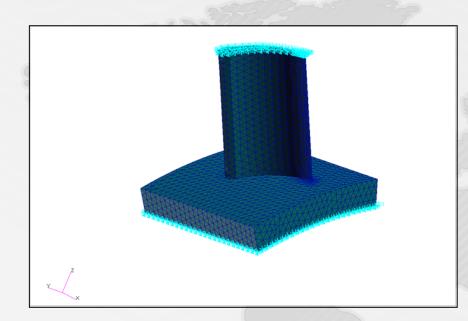
Software


Thermal mesh mapping examples

Thermal Boundary conditions:

- Convection exposed to hot gas at 800°F with h=0.2 Btu/sec-in².°F along the edge of the turbine blade.
- Boundary condition on the bottom of base of 70°F.
- Start off as the coarse mesh for thermal model.

Map meshing – Thermal run



NASTRAN test deck: map_heat1_m.dat

 Since the temperature gradients across the blade is significant we would like to remesh the blades to capture this temperature for thermal stress calculations.

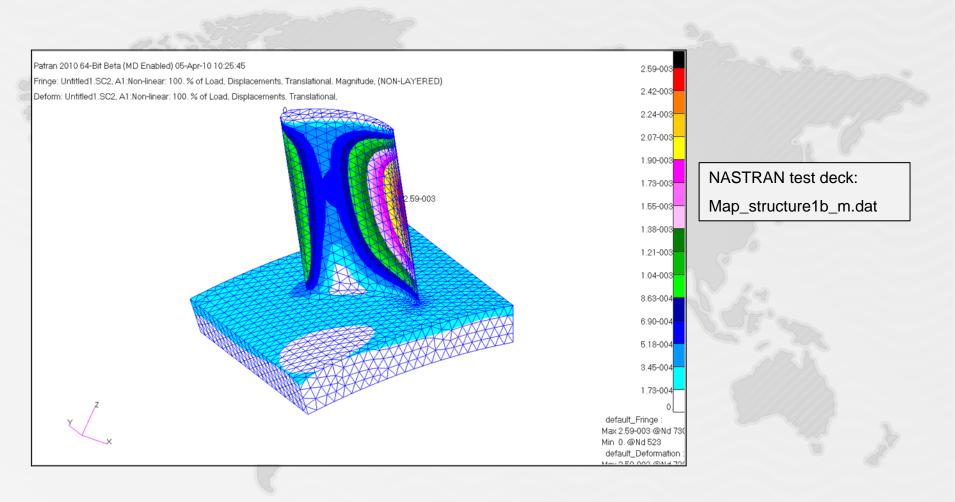
MSC X Software

Map meshing – structure model(Restart)

 Structural model boundary conditions:

- Fixed on top of the blade
- Fixed on the bottom of the base
- Restart commands:

assign hrun='map_heat1.MASTER'
dbloc datablk=(heatdb) logi=hrun

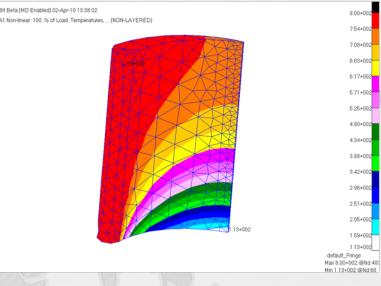

- Please note that for mesh mapping there is a parameter that you can control the interpolation between the coarse and fine mesh. In this case the default for NLMOPTS, MAPTOL is 0.2:
- This means that the box for the thermal mesh and structure mesh are within 20 percent.
- In this case, the MAPTOL tolerance is adjusted to 0.5, and then the interpolating from the coarse thermal - mesh temperature is now able to map to the fined structure mesh.

23

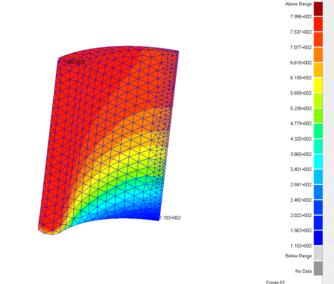
Software

• nlmopts,maptol,0.5

Mesh Mapping – Structure result

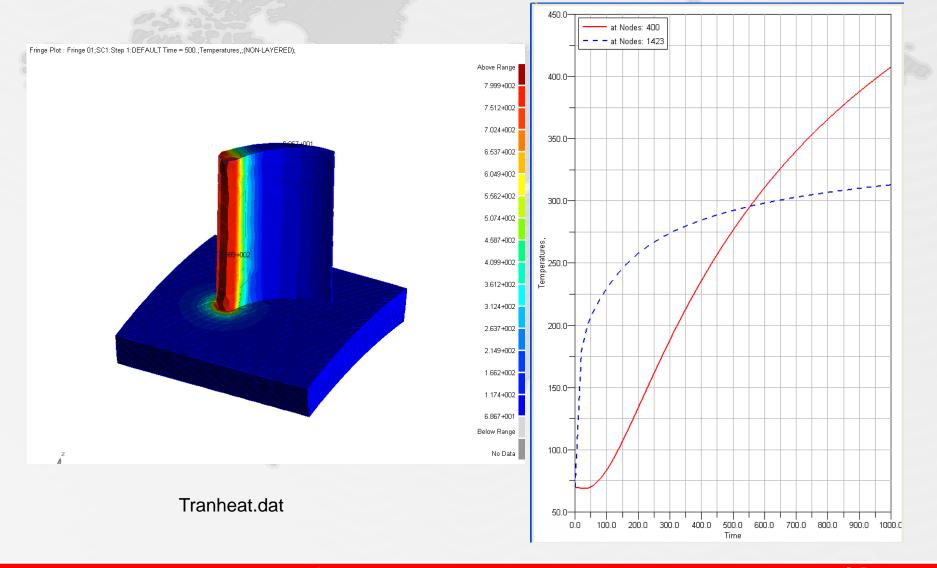

MSC X Software

24


MSC SimEnterprise**

Mesh mapping – see the temperature on the interpolated mesh

- Currently if you want to see the map temperature on the refine mesh, then we have to used the advance nonlinear element:
- PSOLID 1 1 0
- psldn1,1,1,,,ish
- Also we need to put
- •
- nlstress(nlout=12)=all
- BEGIN BULK
- nlout,12,tottemp
- •
- This will allow integration point temperatures to be available in the structural run also and can be post-processed. This capability is only available for advance nonlinear elements.



25

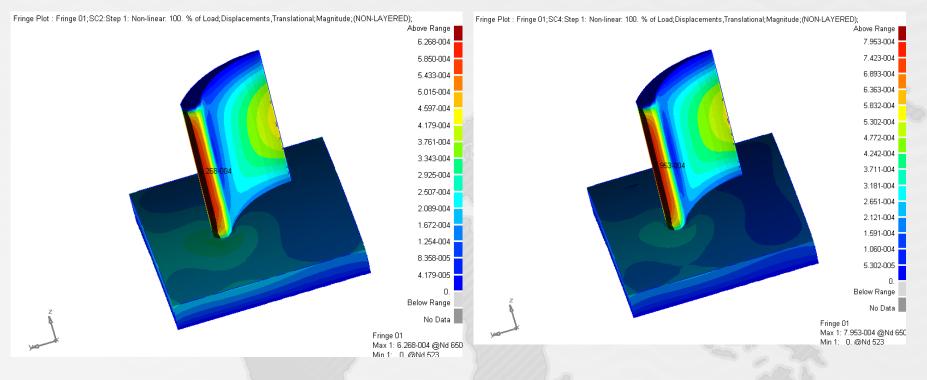
Software

Mesh mapping in transient thermal analysis

مصقع

Mesh mapping in transient thermal run

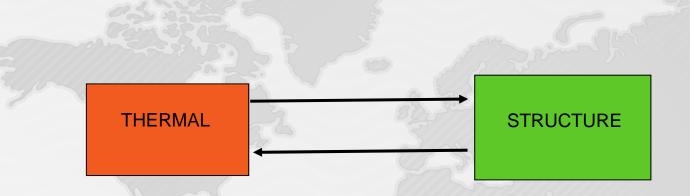
assign hrun='tranheat.MASTER' dbloc datablk=(heatdb) logi=hrun NASTRAN system(316)=7 SOL 400 CEND \$ Direct Text Input for Global Case Control Data TITLE = MD Nastran job created on 02-Apr-10 at 13:30:31 ECHO = NONESUBCASE 2 ANALYSIS=NLSTAT TITLE=This is a default subcase. temp(load,hsub=1,htime=200.0)=9 NLPARM = 1SPC = 2DISPLACEMENT(SORT1,REAL)=ALL SPCFORCES(SORT1,REAL)=ALL STRESS(SORT1,REAL,VONMISES,BILIN)=ALL nlstress(nlout=12)=all


WE want to run the thermal stress at time equals to 200,500, and 610 sec

SUBCASE 3 ANALYSIS=NLSTAT TITLE=This is a default subcase. temp(load,hsub=1,htime=500.0)=11 NLPARM = 1SPC = 2DISPLACEMENT(SORT1,REAL)=ALL SPCFORCES(SORT1,REAL)=ALL STRESS(SORT1,REAL,VONMISES,BILIN)=ALL SUBCASE 4 ANALYSIS=NLSTAT TITLE=This is a default subcase. temp(load,hsub=1,htime=610.0)=12 NLPARM = 1SPC = 2DISPLACEMENT(SORT1,REAL)=ALL SPCFORCES(SORT1,REAL)=ALL STRESS(SORT1,REAL,VONMISES,BILIN)=ALL nlstress(nlout=12)=all \$ Direct Text Input for this Subcase **BEGIN BULK** nlout,12,tottemp nlmopts,maptol,0.5

27

Software


Displacement

Thermal displacement at time equals to 200 sec(left) and at time equals to 610 sec

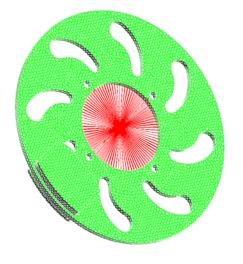
MSCXSoftware

Multi-Physics coupling

Bi-directional coupled thermal-mechanical analysis uses an increment-level staggered approach.

When the solution procedure moves on to a new sub-increment, relevant information from sub-increments (temperature, displacement, generated heat) is passed in. Regular Newton-Raphson iteration are conducted within each sub-increment until convergence is achieved.

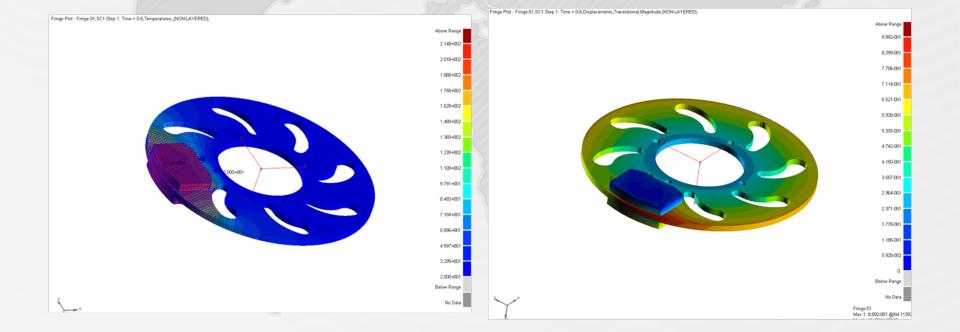
MSC


XSoftware

Type of problems:

- 1) Thermal strains
- 2) Structure properties as a function of temperature
- 3)Thermal problems to be solved on updated geometry
- 4)Thermal loads due to plastic work
- 5) Thermal loads due to friction

Coupled thermal and structure boundary conditions


- Enforced displacement on the disc in the z component at – 1.1 inch
- Rigid element at the center of disc
- Volumetric heating on the brake pad at 0.8 watt/inch**3
- Thermal structure contact between the 2 pad ,2 plate and the disc
- Enforced temperature of 20 degree C along the perimeter at the inner radius

Coupled thermal structure analysis

Temperature contour

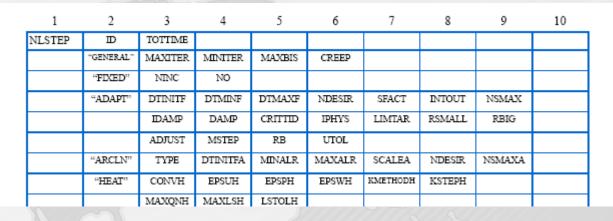
Displacement contour

32

MSC X Software

Use of substeps for multi-physics

SOL 400
CEND
ECHO = NONE
TEMP(INIT)=1
SUBCASE 1
STEP 1
NLSTEP=6
SUBSTEP 1
ANALYSIS=hstat
thermal=all
load=6
BCONTACT= 2
spc=8
SUBSTEP 2
ANALYSIS=nlstat
disp=all
spcf=all
spc=9
BCONTACT= 2
BEGIN BULK
NLSTEP,6,1.0
,GENERAL,10,1,10
,fixed,20,1
,HEAT,U,1.0E-2,1.0E-2,1.0E-2,AUTO
tempd,1,300.0


nalysis Type	Thermal	Structure
	HSTAT	NLSTAT
	HTRAN	NLTRAN

Typically the analysis is from nonlinear steady state thermal into nonlinear structure analysis or nonlinear transient thermal analysis into nonlinear structure analysis

NASTRAN test deck: brake2_mp1.dat

MSCXSoftware

NLSTEP – ADAPT approach

NLSTEP,6,1200.0

,GENERAL,10,1,10

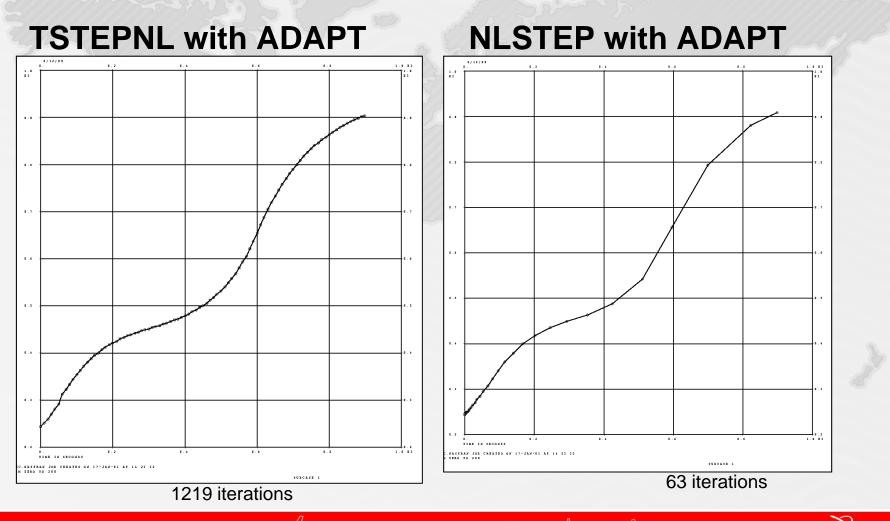
,ADAPT,0.001,1.0E-5,0.5

,HEAT,U,1.0E-2,1.0E-2,1.0E-2,AUTO

34

MSC Software

NLSTEP advantage over the **TSTEPNL**


- The adaptive approach in nonlinear transient thermal analysis can have an effect on runtimes by using 20x fewer iterations to reach end time.
- The user specifies Total time.
 - For example if to run a transient thermal analysis to 1200 sec.
 NLSTEP,1,1200.0
 ,FIXED,50,1
 - The current technique is using 50 increments with fixed time step approach. Using ADAPT approach can be a significant benefit for large transient thermal analysis

🖴 Parameter Set Editor: Load Case Co	ntrol		?
 Parameter Set Editor; Load Case Control Analysis Control Generic Control Iteration Control for Heat Transfer Convergence Criteria for Heat Transfer Select Nonlinear Initial Condition Direct Input Matix Selection Direct text Input (CASE) 	Stepping Control Parameters Locally Define Stepping Control Parameters Local Analysis Control Parameters Stepping Type:	Adaptive Adaptive ical Criteria ime:	
	Close	Apply	

35

Software

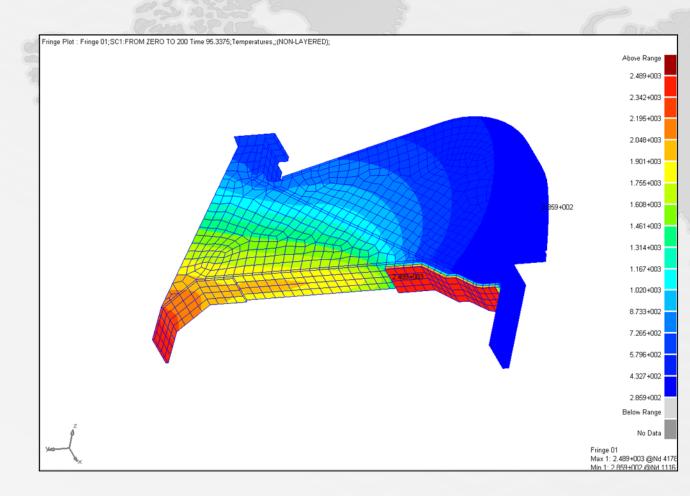
Number of steps is significantly reduced using the NLSTEP with ADAPT

NLSTEP bulk data entry

	astro	500							
1	2	3	4	5	6	7	8	9	10
NLSTEP	ID	TOTTIME							
	"GENERAL"	MAXITER	MINITER	MAXBIS	CREEP				
	"FIXED"	NINC	NO						
	"ADAPT"	DTINITF	DTMINF	DTMAXF	NDESIR	SFACT	INTOUT	NSMAX	
		IDAMP	DAMP	CRITTID	IPHYS	LIMTAR	RSMALL	RBIG	
		ADJUST	MSTEP	RB	UTOL				
	"ARCLN"	TYPE	DTINITFA	MINALR	MAXALR	SCALEA	NDESIR	NSMAXA	
	"HEAT"	CONVH	EPSUH	EPSPH	EPSWH	KMETHODH	KSTEPH		
		MAXQNH	MAXLSH	LSTOLH					
	"MECH"	CONV	EPSU	EPSP	EPSW	KMETHOD	KSTEP	MRCONV	
		MAXQN	MAXLS	LSTOL	FSTRESS				

اصروها

NLSTEP,6,1200.0 ,GENERAL,10,1,10 ,ADAPT,0.001,1.0E-5,0.5 ,HEAT,U,1.0E-2,1.0E-2,1.0E-2,AUTO NLSTEP,6,1200.0 ,GENERAL,10,1,10 ,ADAPT,0.001,1.0E-5,0.5, , ,12 ,HEAT,U,1.0E-2,1.0E-2,1.0E-2,AUTO


The output will be at 1200 sec/ 12 = 100 sec

37

MSC X Software

0,100,200,300 ... 1200

Nonlinear transient thermal analysis of aircraft part subject to radiation thermal load

Thermal boundary conditions:

Fire source temperature: 2550°F

H(time) and heat sink is also a function of time.

Radiation to space from the part that exchange heat with ambient hot temperature.

Initial temperature is at 245°F.

Total analysis time is 900 sec.

NLSTEP test deck: flight spcd_nlstep_900.dat

عصک ا

H(time)

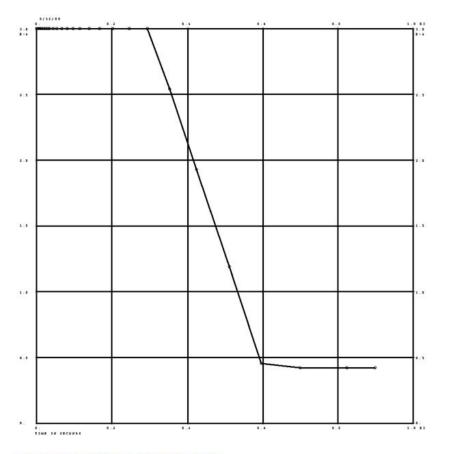
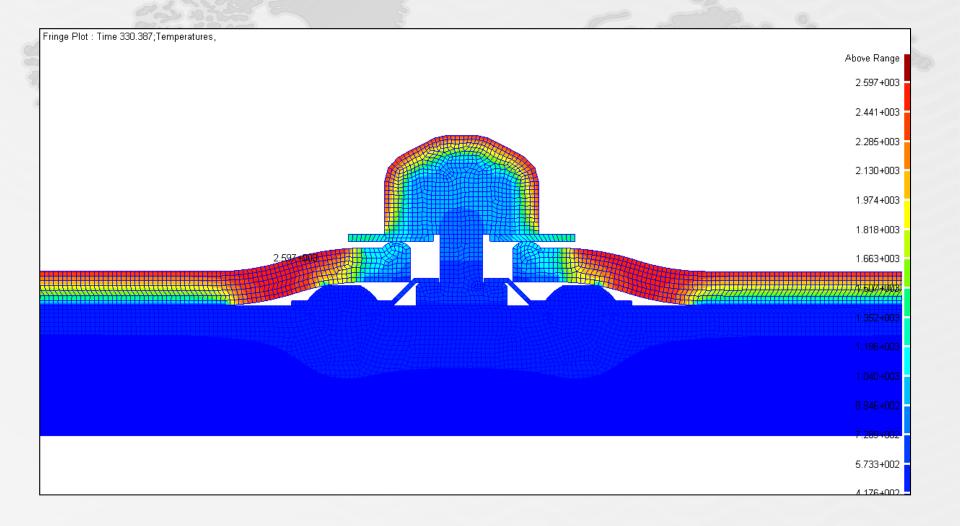


Figure 5: Convection coefficient as a function of time (NLSTEP)

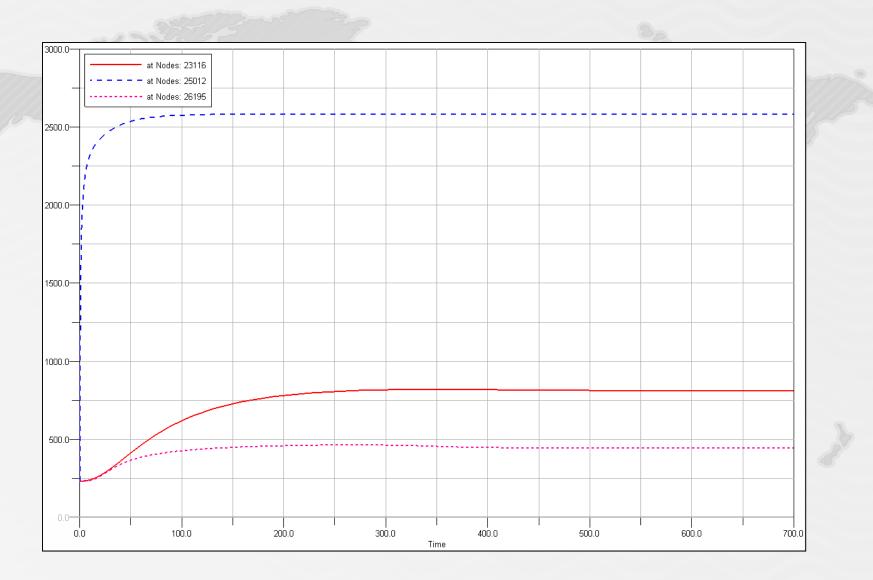
As you can see that the adaptive scheme actually captured the variation very accurately.


TABLED1 8

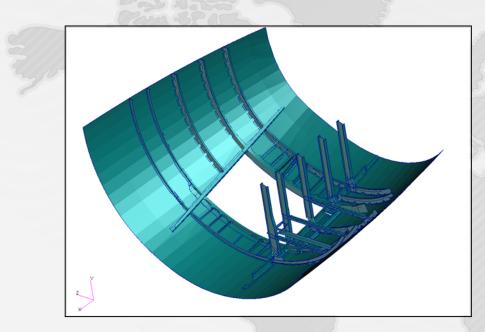
0. 3.-4 300. 3.-4 600. 4.24-5 900. 4.24-5

ENDT

The time stepping occurs on 293.6 and at 596.5 sec where in fact it is at 300.0 and 600 sec that we specified the change.


Transient thermal analysis

MSC SimEnterprise[™]


MSC Software

Temp versus time plot

້៙້

NLSTEP with ADAPT option

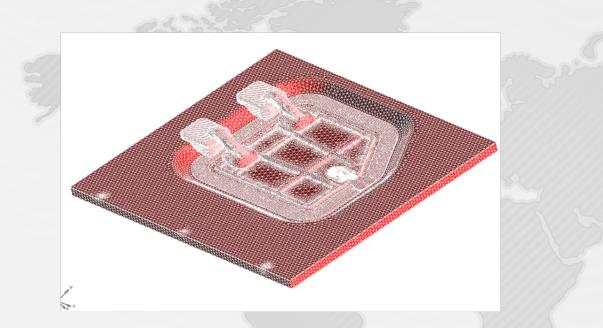
NLSTEP,6,1200.0 ,ADAPT,0.001,1.0E-5,0.5 ,HEAT,U,1.0E-2,1.0E-2,1.0E-2,AUTO This type of model required the use of radiation to space to a time varying temperature boundary conditions, thermal contact, convection coefficient as a function of time, ambient temperature as a function of time, and temperature dependent thermal conductivity.

The client is currently using SOL 159 for this type analysis. Recently the sent in this model, which was then run using SOL 400 using analysis=HTRAN

28	Cpu time	Speed gain
SOL 159	1.622 hours	1.0
SOL 400	0.8 hours	2.0 times faster

Software

Reflection method

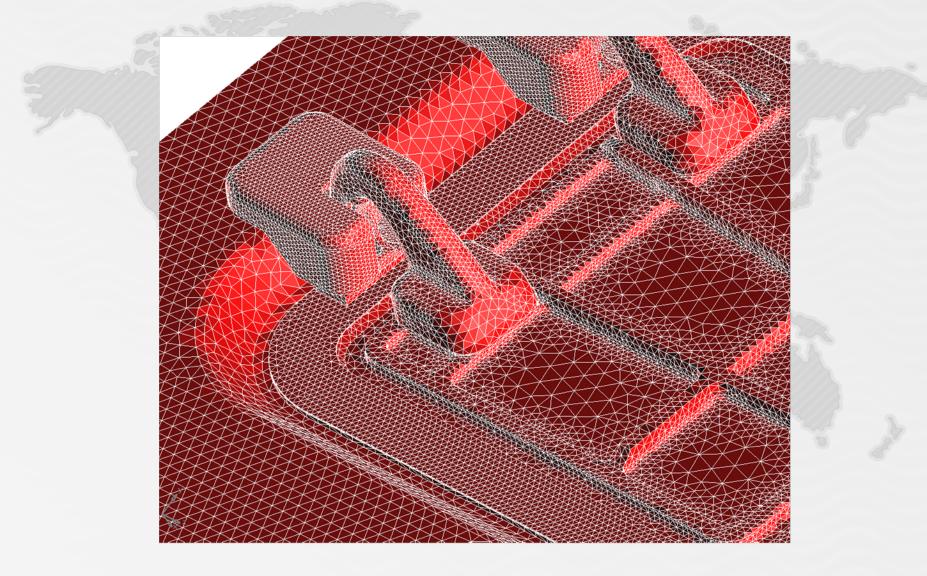

- Let us define the radiation matrix in the thermal user guide App F 6-29:
 - R=sigma*{A*eps-A*alpha*[A-F*(I-alpha)]⁻¹*F*eps}
- The reflection matrix is
 - [A-F*(I-alpha)]⁻¹
- This reflection matrix is costly since it involves the factorization of a dense matrix.
- In MDR3 version of SOL 400, we can set the 8th field on the NLMOPTS to 1 to activate the explicit treatment of reflection matrix.
- In this procedure, the radiation exchange matrix constructed to be:
 - R=sigma*{A*eps-A*alpha*F*eps}
- Note that the expensive reflection term is absent. This reduced form of the radiation exchange matrix is added to the stiffness matrix. Since the reflection matrix is never calculated and factorized, the calculation of the radiation exchange matrix is significantly cheaper.

MSC

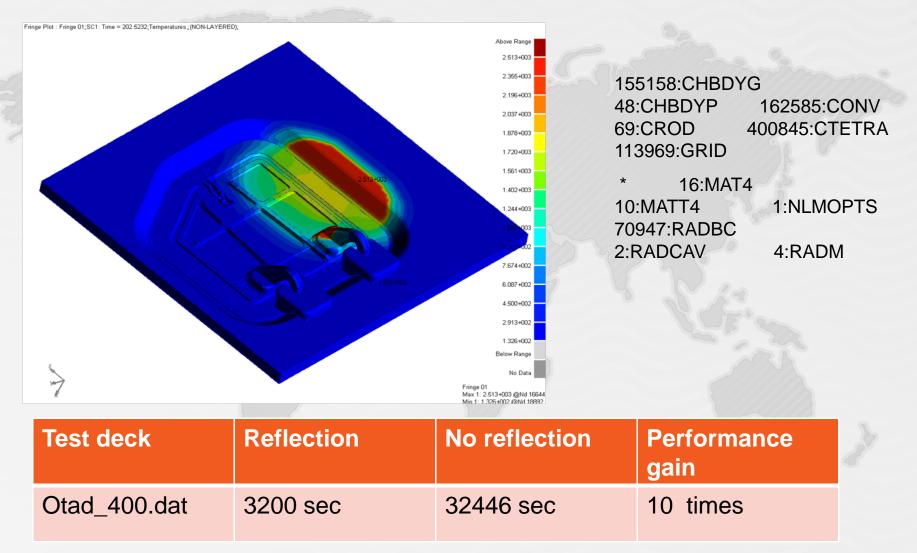
43

Software

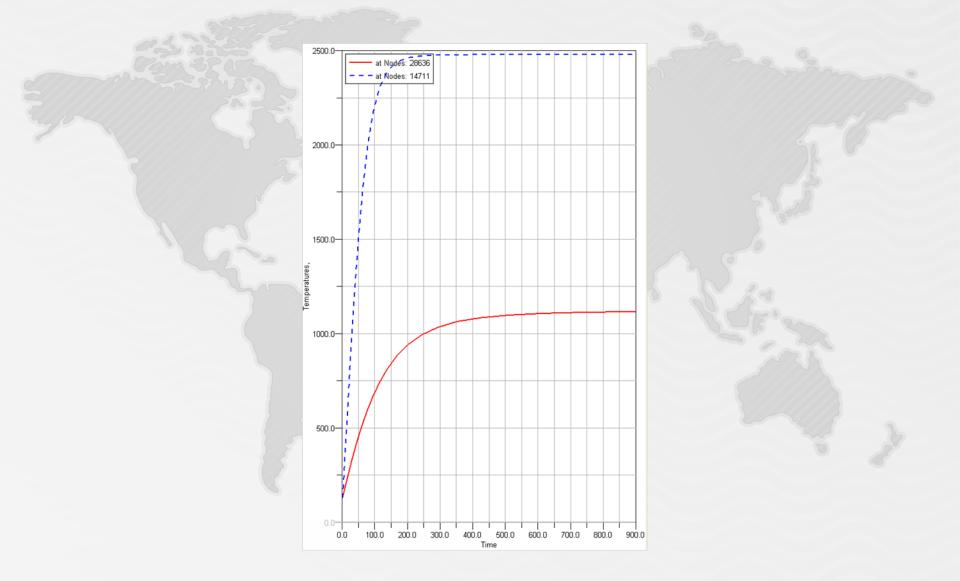
Reflection matrix example

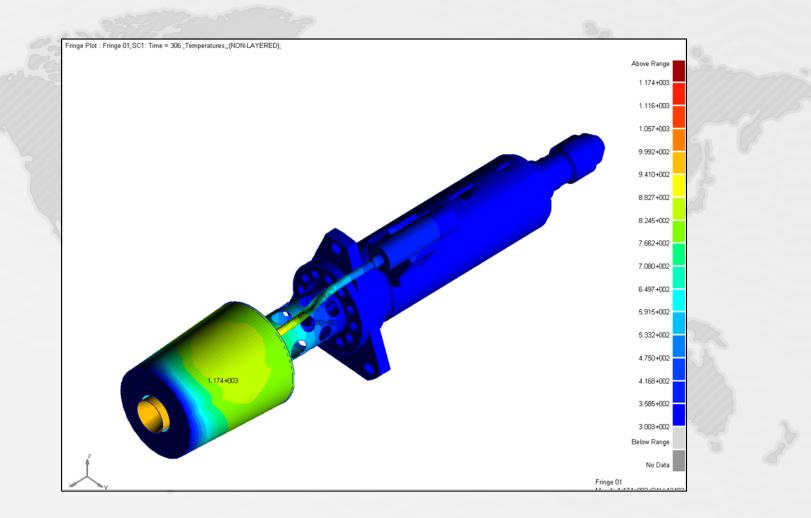

For the flux calculation, an iterative procedure is used based on iterating simultaneously satisfying both Poljak equations in the *MSC Nastran Ther* 6-11 and 6-12, respectively.

$$A\{q\}_{e}^{\mathbb{IN}} = [F]\{q\}_{e}^{\mathsf{OUT}}$$


$$\{q\}_{e}^{\mathsf{OUT}} = \sigma[\varepsilon] \{u_{e}\}^{4} + [I - \varepsilon] \{q\}_{e}^{\mathsf{IN}}$$

MSC SimEnterprise[™]

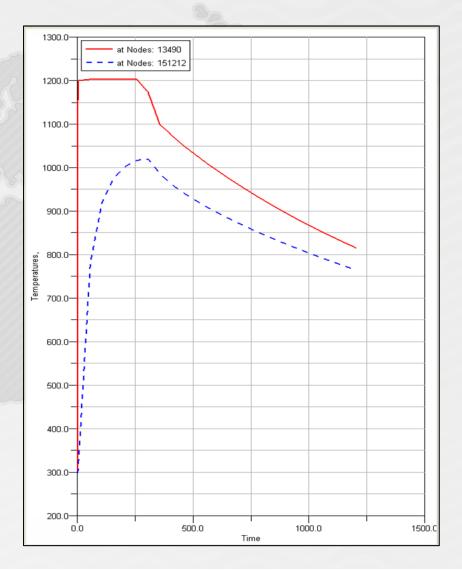

Reflection example


Reflection example

Reflection transient thermal run

Large nonlinear transient thermal run

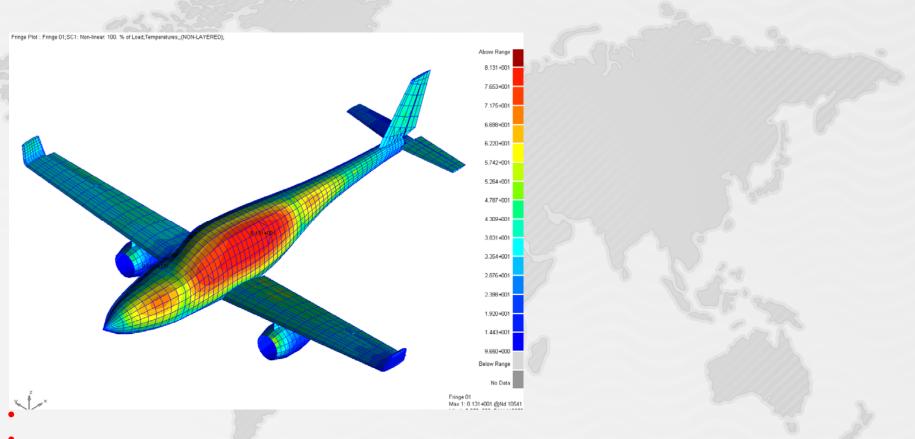
MSC SimEnterprise**


48

Thermal boundary conditions:

The next model is a large transient thermal model that consist of plate, solid, and rod elements.

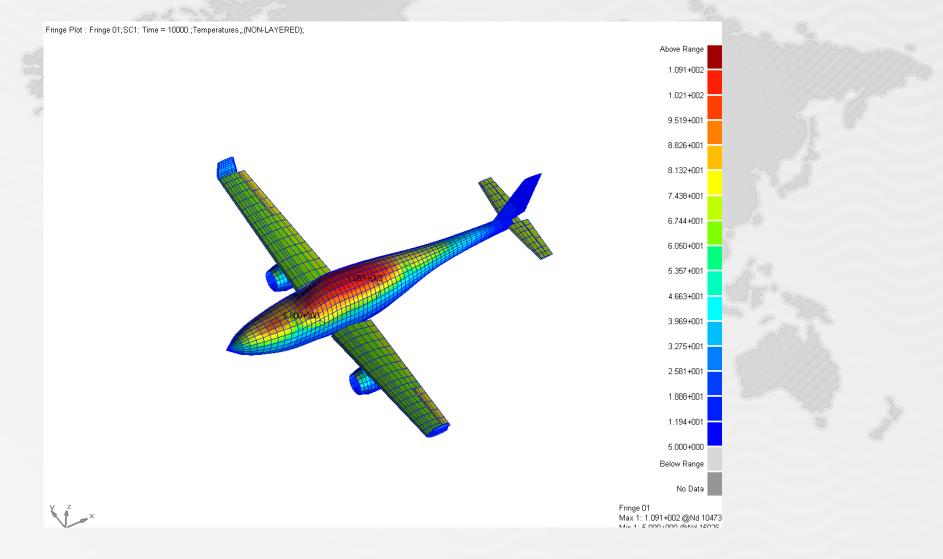
Thermal boundary conditions:


- Mass flow rate in the tube as a function of time.
- Volumetric heat generation of heaters.
- Radiation to space at 298K.
- Coupled convection between parts.
- Convection to a hot source at 1220K from time zero to 300 sec.

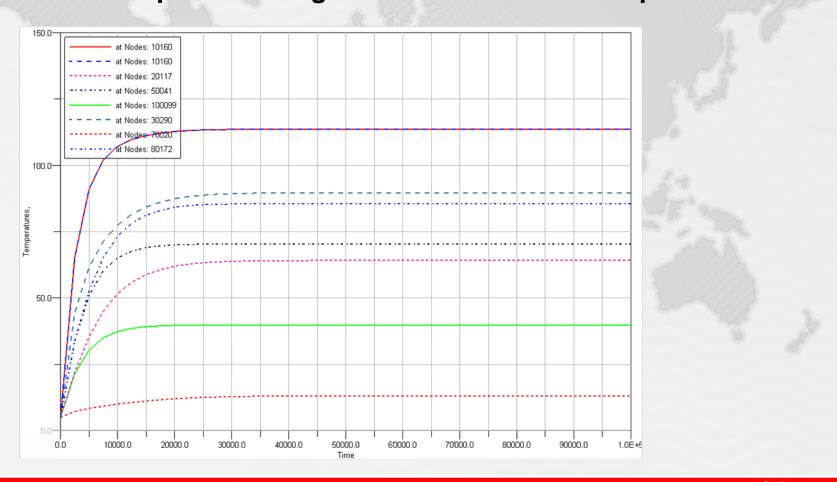
49

Software

Solar heating on the aircraft


- NASTRAN test deck:air_45c.dat
- Directional heat load comes at 45 degree (0,1,-1) with solar flux equals to 0.48387 watt/in2
- View factor for all the exposed surfaces ,and the lost radiation goes to 5 degree C ambient

Solar heat load on aircraft


MSC SimEnterprise[™]

Transient thermal with solar heating on aircraft

Thermal boundary conditions

Solar heating with 0.48387 watt/in2 coming in the –z direction
Radiation to space to 5 degree C with view factor equals to 0.5

53

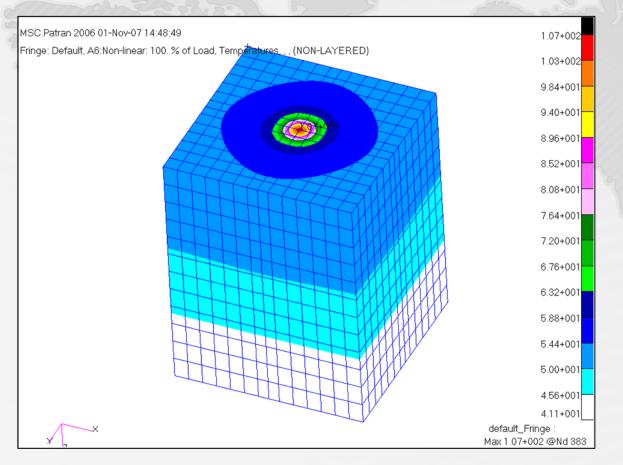
Software

Performance improvement of MD2010 in SOL 400

• Client sees the benefit of CPU performance:

- NLSTEP with ADAPT speed increase by a factor of 2.(example 1)
- Reflection matrix in radiation decomposition factor of 10 (example 2)
- Hemi-cube view factor calculations 10 to 30 times faster as compared with Gaussian integration method

Ease of Use:


• Ease of use:

- 1. Thermal contact to join dissimilar mesh
- 2. NLSTEP with ADAPT option the initial time step was critical to reached convergence in nonlinear thermal analysis, In SOL 159 many nonlinear problem had to use the fix time steps. The adaptive time steps removed the guessing game of what is the best time step to used in my problem. Additionally the adaptive approach reduced the total solution time, and it offer an option to output even intervals in time.
- 3. The multi-physics run from analysis=HTRAN into analysis=NLSTAT allows the user to compute the thermal stress at every time increment as specified by the NLSTEP option. The user no longer had to save the punched temperature output and manually do the temp(load)=x for every time increment.
 - This is a time saving feature
- 4. Mapping from coarse thermal mesh into fine structure mesh using restart or vice versa. Previously in PATRAN once has to create a field that represent the temperature and then extrapolate this field to a different mesh model.(very tedious and time consuming)

Software

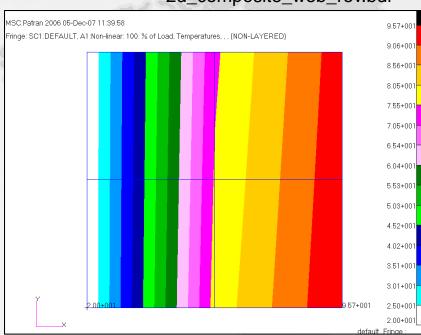
3D composite heat transfer element

Test deck: bench_3d_layer_176.dat

posite	group nu	ımbei	r L	1		
num	ber of laye		12			
solid c	omposite	direction	-1			
allowable interlaminar bond shear stress 0.0000						
actual layer thickness is given below						
layer	ss ply angle					
1	112	1	1.000E-03	0.000E+00		
2	111	1	1.000E-03	0.000E+00		
3	110	1	1.000E-03	0.000E+00		
4	109	1	1.000E-03	0.000E+00		
5	108	1	1.000E-03	0.000E+00		
6	107	1	1.000E-03	0.000E+00		
7	106	1	1.000E-03	0.000E+00		
8	105	1	1.000E-03	0.000E+00		
9	104	1	1.000E-03	0.000E+00		
10	103	1	1.000E-03	0.000E+00		
11	102	1	1.000E-03	0.000E+00		
12	101	1	1.000E-03	0.000E+00		

com

معتمم


3D composite solid(Solid composite)

PCC Name	OMPLS: 'PCON		1_bencl					. ?
Descr	iption:							
Entities: 2352 Elements								
	ial coordinate sys							
	direction:		-1					~
-	ated inputs for Co	ompositi	е					
	Global ply ID	Mater	ial Id	Ply thick	iness	Orientat	ion ang	<u>-</u> +
1	101	_176.0	lat 🔀 🕶	0.001	13 -	0.0	13 -	
2	102	_176.0	lat 🔀 🕶	0.001	13 -	0.0	13 -	-
3	103	_176.0	lat 🔀 🕶	0.001	13 -	0.0	13 -	•
4	104	_176.0	lat 🔀 🕶	0.001	13 -	0.0	13 -	
5	105	_176.0	lat 🔀 🕶	0.001	13 -	0.0	13 -	
6	106	_176.0	lat 🔀 🕶	0.001	13 -	0.0	13 -	
7	107	_176.0	lat 🔀 🕶	0.001	13 -	0.0	13 -	
2		4.70		0.004	~	100	>	×
Advanced >> Solver Preview >>								
						ancel		Apply

pcompls,1,-1,,,ih ,c20,,,slco,q ,101,1,0.001 ,102,1,0.001 ,103,1,0.001 ,104,1,0.001 ,105,1,0.001 ,106,1,0.001 ,107,1,0.001 ,108,1,0.001 ,109,1,0.001 ,110,1,0.001 ,111,1,0.001 ,112,1,0.001

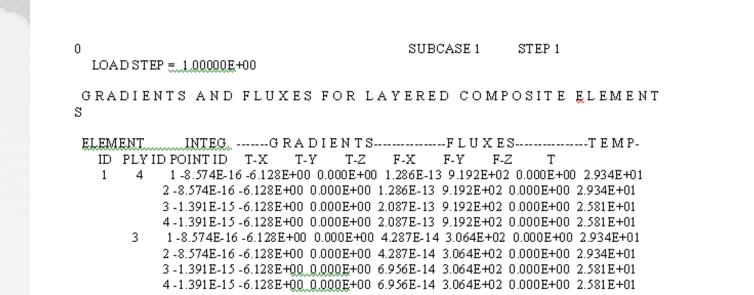
عصک ا

2D composite heat transfer

2d_composite_web_rev.bdf

Boundary conditions:

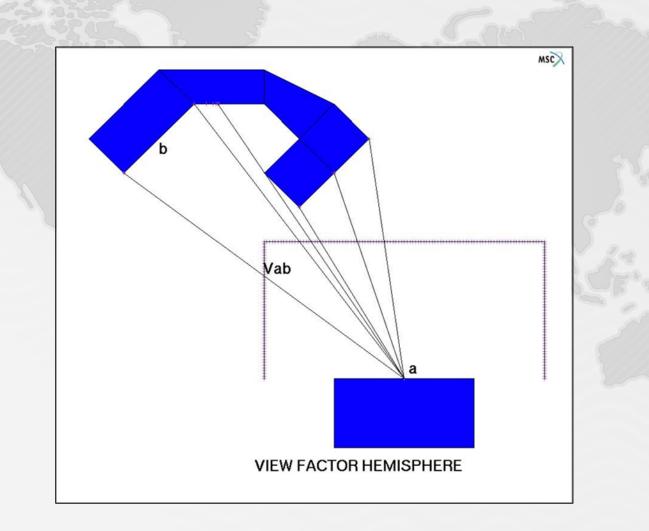
Heat flux of 50 Btu/hr/inch² impose on the top surface.


Edge is held at 20°F.

pshln1,1,1,,,ih PCOMP,1 ,1,0.1,-45.0,,2,0.1,90.0 ,2,0.1,0.0

🛛 LA'	YEREDCOMPOSITE: 'I	PCOMP_1_2d_com	posite_web	_rev.bdf P	roperty		? 🗙
Defin	ition Elemental Data	1					
Name: PCOMP_1_2d_composite_web_rev.bdf ID: 1 Description:							
_	Define global ply ID	Elemente					
Non	rrence plane distance: Structural Mass: posite Ply						8.
	Material Id	Ply thickness		Orientation ang	le	Stress/Strain output option	+
1	composite_web_rev.bdf	5 0.1	13 -	-45.	∽ ≂	(×
2	composite_web_rev.bdf	5. 🗸 🔹 0.1	13 -	90.	13 -		~
3	composite_web_rev.bdf	☑ ▼ 0.1	12 -	0.0	13 -		✓
	Advanced >> S	Solver Preview >>	Laminate Edit	Dr >>			
G					ОК	Cancel	Apply

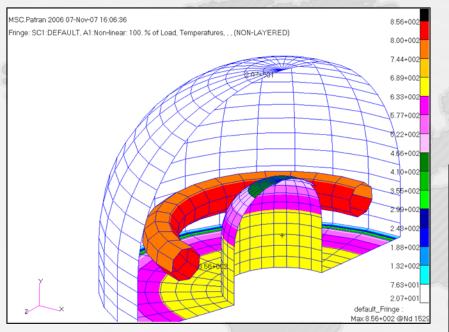
2D composite output (F06)


NLSTRESS=ALL to request this output

Test deck: htshell1.dat

XSoftware

Hemi-Cube pixel based view calculation method


عصک ا

MSC Software

60

MSC SimEnterprise[™]

Radiation analysis using hemi-cube

- NASTRAN test deck:quartz_lamp_hemi.dat
- CPU performance:

Number of CHBDYG elements	Hemicube	Gaussian
1440	48.3 sec	182.6 sec
72643	4851.9 sec	259251 sec

The performance for the large model is 50 times faster using the hemicube method

MSCX Software

How to activate the hemi-cube viewfactor analysis

SOL 400 CEND ANALYSIS = HSTAT TITLE = MSC/NASTRAN job created on 29-Oct-98 at 16:46:24 ECHO = NONE**MAXLINES = 999999999** TEMPERATURE(INITIAL) = 1 **\$ Direct Text Input for Global Case Control Data SUBCASE 1 \$** Subcase name : Default SUBTITLE=Default NLPARM = 5SPC = 1LOAD = 2THERMAL(SORT1, PRINT)=ALL FLUX(SORT1,PRINT)=ALL **\$** Direct Text Input for this Subcase **BEGIN BULK** nlmopts,hemi,1

The Hemi-Cube option is also available for SOL 153 and SOL 159

SOL 153 CEND ANALYSIS = HEAT TITLE = MD Nastran job created on 07-May-07 at 15:18:11 ECHO = NONE TEMPERATURE(INITIAL) = 1 SUBCASE 1 TITLE=This is a default subcase. NLPARM = 1SPC = 1LOAD = 2THERMAL(SORT1, PRINT)=ALL FLUX(SORT1,PRINT)=ALL **BEGIN BULK** PARAM POST 0 PARAM TABS 273.15 PARAM SIGMA 5.6696-8 NLPARM 1 FNT 1 25 PW NO 1.0e-6.001 1.-7 \$ Direct Text Input for Bulk Data \$ Elements and Element Properties for region : plate nlmopts,hemi,1

NLMOPTS

NLMOPTS - SOL400 nonlinear heat transfer view factor method selection

nlmopts	hemi	1	Npixel	Ndiv	Cutoff	Fraction	Faccnt	factol
nlmopts	hemi	12	No.	- E	0.0	0.01	1	

Field 2: HEMICUBE keyword Field 3: VMETHOD= 0 Default. Use Nastran finite difference, contour integration, or Gaussian integration method. VFMETHOD = 1 (HEMI) Use pixel based modified hemi-cube method.

Field 4

NPIXEL = 500

Enter the number of pixels (default is 500).

Field 5

NDIVISION=36

For axisymmetric cavities, enter the number of divisions around circumference. Default is 36.

Field 6

CUTOFF = 0.0

Factor below which view factor will be set to zero.

Field 7

Fraction=0.01

Factor below which radiation exchange matrix terms are not added to the stiffness matrix.

Field 8

Faccnt=set to 1 to activate explicit treatment of reflection matrix.

Field 9

Factol = tolerance on the iterative procedure on the Poljak equation

Please note that the field 8 and 9 only pertains to SOL 400 thermal analysis. The explicit treatment is not in SOL 153 or SOL 159.

64

Reduced view factor output (Hemi-Cube or Gaussian method)

- RADCAV, ICAVITY, ELEAMB, SHADOW, SCALE, PRTPCH
 - The PRTPCH field by default is set to blank.
 - A blank PRTPCH means that there is no view factor print out in the F06 files

Value	Printout in .f06 file	Printout in .pch file
Blank	NO	YES
0	FULL PRINT	YES
1	NO	YES
2	FULL PRINT	NO
3	NO	NO
4	SUMMARY PRINT	YES
5	SUMMARY PRINT	NO

Summary output for VIEW3D

Radcav,1, , , ,4

*** VIEW FACTOR MODULE *** OUTPUT DATA *** CAVITY ID = 10 ***

	C*					
PARTIAL						
SURF-I	SURF-J	AREA-I	AI*FIJ	FIJ	ERROR	SHADING
100001	-SUM OF	3.	89031E+00	9.92530	E-01	
100002	-SUM OF	3.	94100E+00	1.00546	E+00	
100003	-SUM OF	3.	94826E+00	1.00732	E+00	
100004	-SUM OF	3.	96734E+00	1.01218	E+00	
100005	-SUM OF	3.	89080E+00	9.92532	E-01	
100006	-SUM OF	3.	94149E+00	1.00546	E+00	
100007	-SUM OF	3.	94876E+00	1.00732	E+00	
100008	-SUM OF	3.	96788E+00	1.01220	E+00	
100009	-SUM OF	3.	89051E+00	9.92526	E-01	
100010	-SUM OF	3.	94120E+00	1.00546	E+00	
100011	-SUM OF	3.	94848E+00	1.00732	E+00	

It is recommended that for the large radiation problem, set the prtpch field to 4 or 5 to see the summarized view factor output. For the complete enclosure, the FIJ should be close to 1.0.

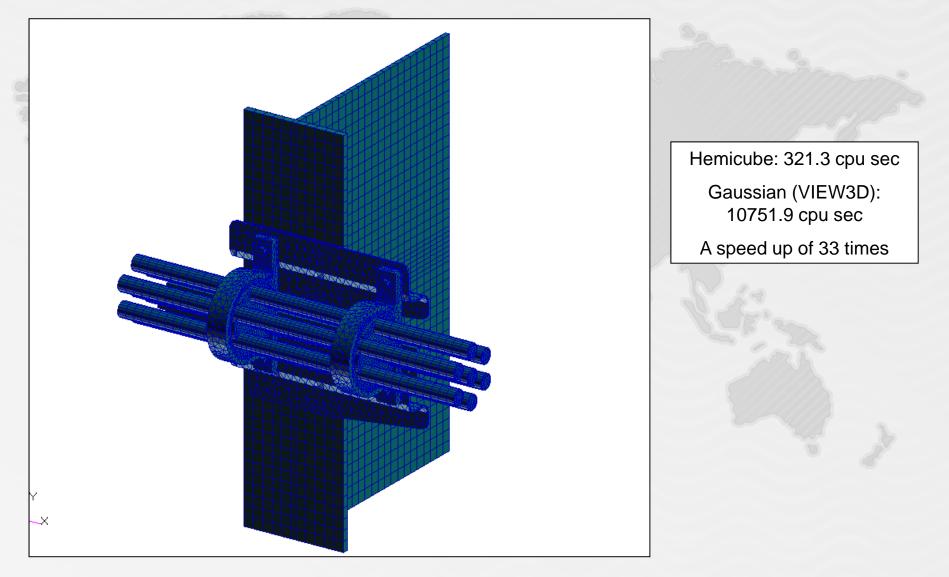
FULL PRINT – option 0

0

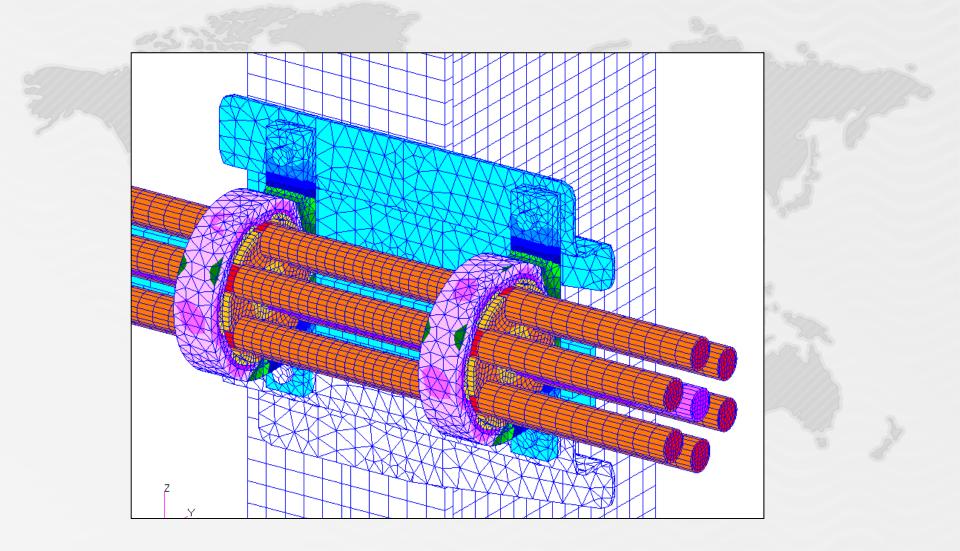
1 MSC/NASTRAN JOB CREATED ON 29-OCT-98 AT 16:46:24 DECEMBER 6, 2007 MD NASTRAN 12/ 5/07 PAGE 19

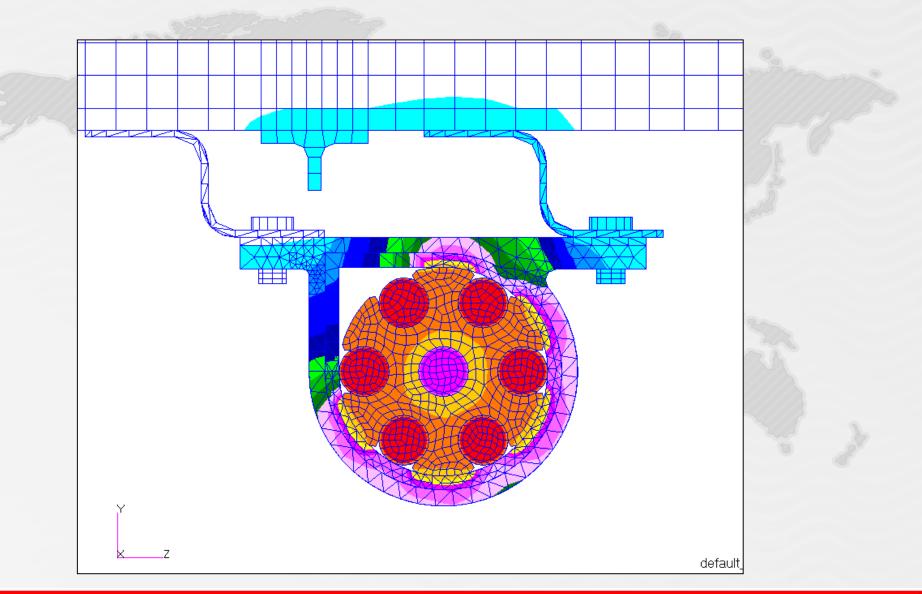
*** VIEW FACTOR MODULE *** OUTPUT DATA *** CAVITY ID = 10 ***

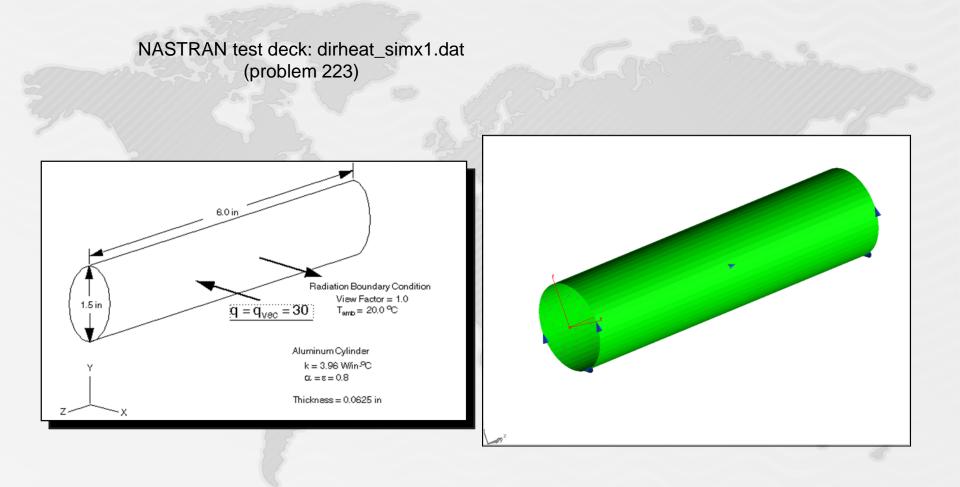
ELEMENT TO ELEMENT VIEW FACTORS

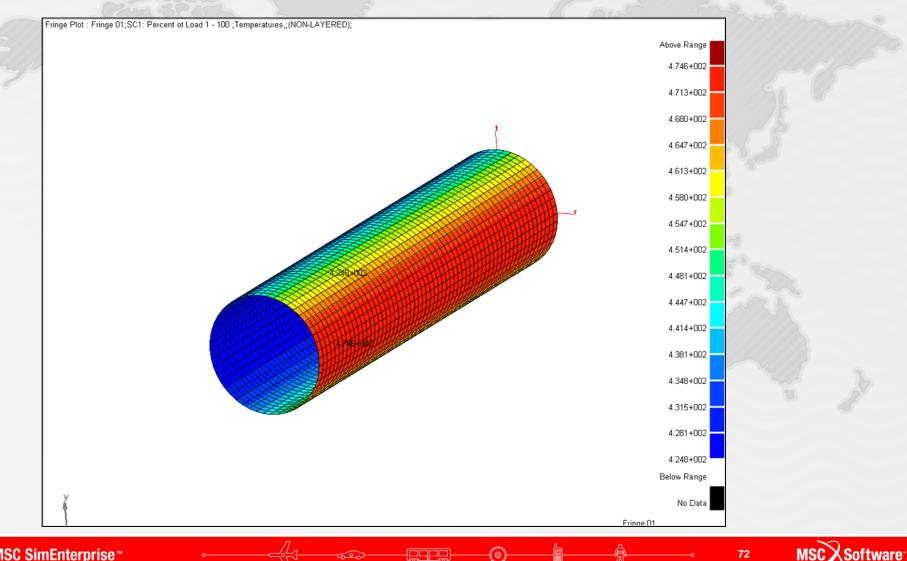

SURF-I SURF-J AREA-I AI*FIJ FIJ SCALE

100001 -1000013.9196E+000.00000E+000.00000E+001.0000E+00100001 -1000023.9196E+000.00000E+000.00000E+001.0000E+00100001 -1000043.9196E+000.00000E+000.00000E+001.0000E+00100001 -1000053.9196E+005.20687E-031.32842E-031.0000E+00100001 -1000063.9196E+003.60373E-039.19414E-041.0000E+00100001 -1000073.9196E+001.68619E-034.30195E-041.0000E+00100001 -1000083.9196E+007.66245E-041.95491E-041.0000E+00100001 -1000093.9196E+005.62728E-031.43568E-031.0000E+00

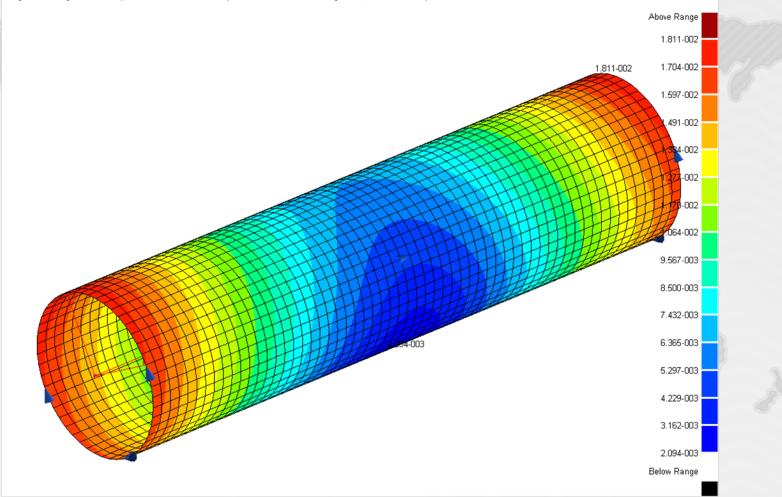

اصروها


View factor for 19594 CHBDYG elements

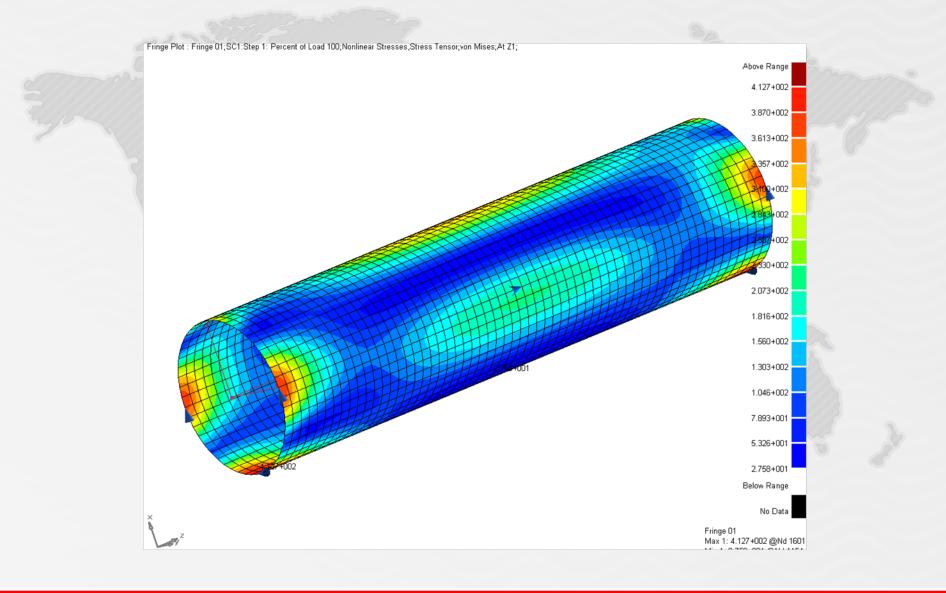

Temperature Contour Plot


Temperature Contour Plot, (Cont.)

Directional heat load coupled thermal stress analysis



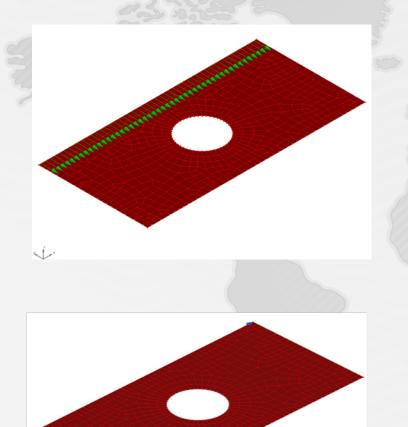
Calculated temperature of the cylinder:



Thermal stress analysis

Fringe Plot : Fringe 01;SC1:Step 1: Percent of Load 100;Displacements,Translational;Magnitude;(NON-LAYERED);

VonMises stress



MSC Software

74

MSC SimEnterprise[™]

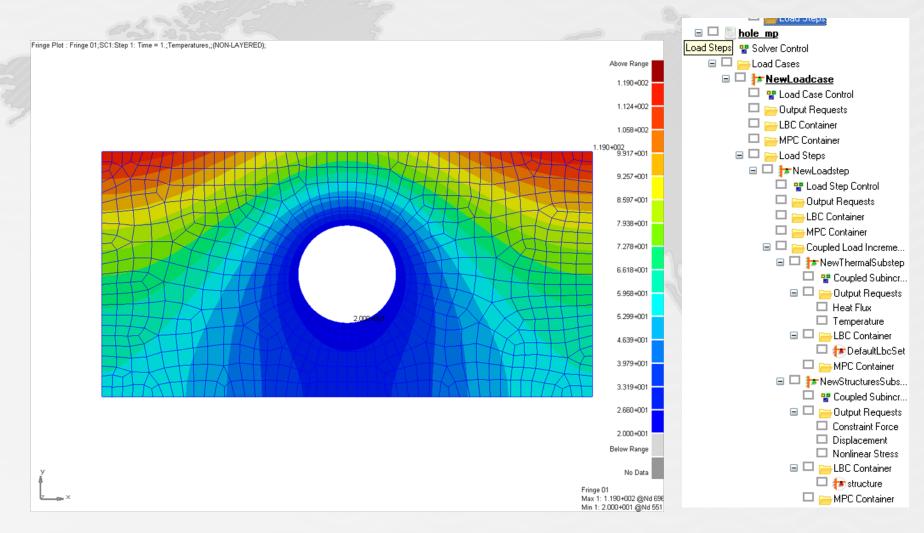
Thermal and structure boundary conditions for multiphysics runs for the heat flow around the hole

NASTRAN test deck: hole_mp.bdf SIMX file: cquad4_flux_mp.Simxpert The plate is 10 inch by 5 inch, with hole diameter equals to 2 in Thermal Boundary conditions: •Heat flux of 200 watt/in2 •Temp held constant at 20 C at hole circumference.

In order to constraint the free-body moment of a plate:

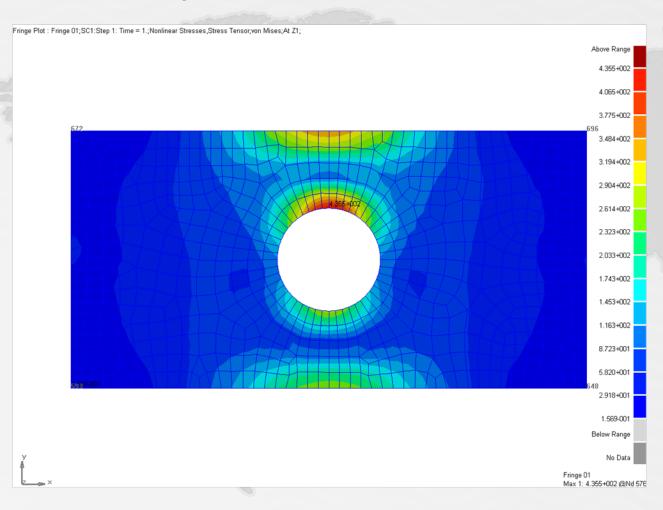
The plate is bounded on lower left vertex(grid 599), upper right corner (grid 696)

spc1,2,123,599


spc1,2,13,696

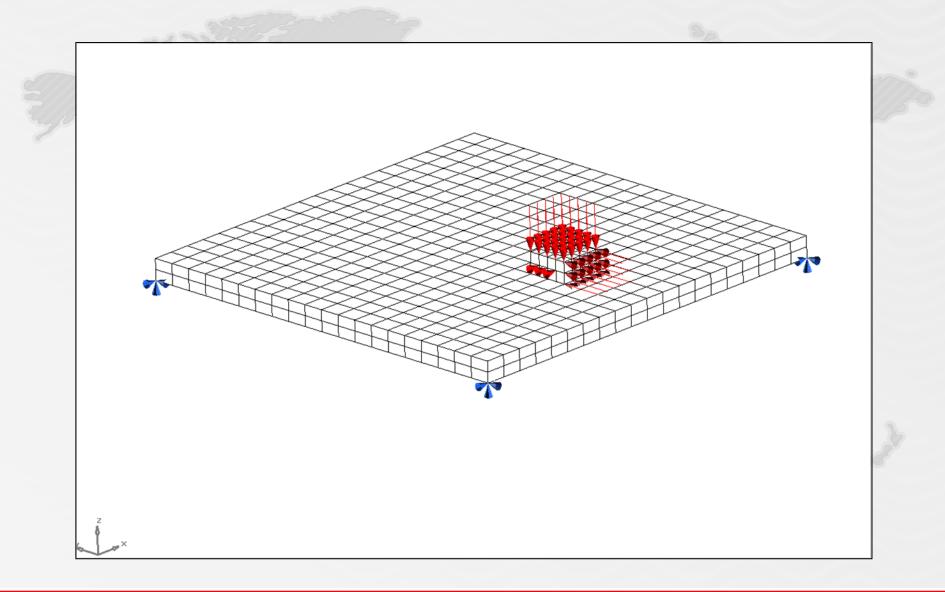
we need to fix the rotation in z direction, x on grid 599 and x on the grid 696 will take care the rotation in z.

The z at grid 599 and x at grid 696 will take care the rotation in x. the y at grid 599 and z at grid 696 will take care the rotation in y.



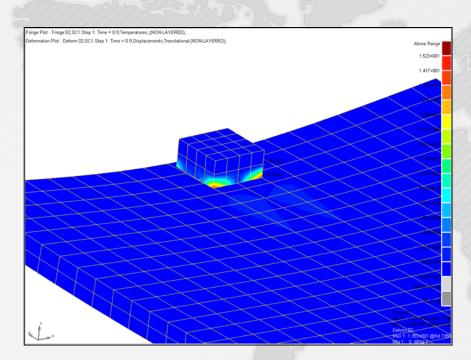
Multi-physics job set up using SIMX

Cquad4_flux_mp.Simxpert


Multi-physic – heat flow around a hole

Thermal stress contour

NASTRAN test deck: hole_mp.bdf


Friction heating example

MSCXSoftware

Friction heating

NASTRAN test deck: spcd6.dat

• The plate is 20 by 20 inch with thickness equal to 1 inch:

• The small block has a dimension of 2 by 2 inch with 1 inch thick.

Structure boundary conditions:

- Enforce displacement of 15 in y direction along the right face of the top solid
- Enforced displacement of 1 in negative z direction on the top face of the top solid.
- Fix on three grids in x displacement
- Pin condition along the four corners.
- Structure contact between the small box and the surface
- Frictional coefficient=0.1
- HGENFRIC=0.1, conversion factor for heat generated due to friction
- Scenario: analysis=HTRAN into analysis=NLSTAT
- Bilinear coulomb friction
- Initially the temperature is zero degree.

79

Software

SOL 400 uses the SPCD and SPC1 instead of TEMPBC, TRAN option

- Whenever you have a time-varying temperature boundary conditions, convection coefficient as a function of time, view factor as a function of time, NASTRAN previous in SOL 159 will write out a TEMPBC,TRAN for the control node.
- This type of input using TEMPBC,TRAN has been replaced with different type of input through SPCD and SPC1 bulk data entries in SOL 400.

Software

Converting from SOL 159 into SOL 400

لصصف

ID MSC-NASTRAN V68 SOL 159 TIME 10 CEND TITLE = EXAMPLE 7B ANALYSIS = HEAT THERMAL = ALLFLUX = ALLSPCF = ALLOLOAD = ALLIC = 20TSTEPNL = 100DLOAD = 200**BEGIN BULK** TSTEPNL,100,7500,1.0,1,,,,U \$

ID MSC-NASTRAN V68 SOL 400 TIME 10 CEND TITLE = EXAMPLE 7B ANALYSIS = HTRAN THERMAL = ALLFLUX = ALLSPCF = ALLOLOAD = ALLIC = 20TSTEPNL = 100DLOAD = 200**BEGIN BULK** TSTEPNL,100,7500,1.0,1,,,,U

MSC X Software

Example 7d: SOL 159 input

ID MSC-NASTRAN V68 SOL 159 **TIME 10** CEND TITLE = EXAMPLE 7D ANALYSIS = HEAT THERMAL = ALL FLUX = ALLSPCF = ALLOLOAD = ALLSPC = 10IC = 20TSTEPNL = 100DLOAD = 200OUTPUT(XYPLOT) XTITLE = TIME. SECONDS YTITLE = GRID 1 TEMPERATURE DEGREES CELSIUS TCURVE = GRID 1 TEMPERATURE VS. TIME XYPLOT TEMP/1(T1) XTITLE = TIME, SECONDS YTITLE = GRID 50 TEMPERATURE DEGREES CELSIUS TCURVE = GRID 50 TEMPERATURE VS. TIME XYPLOT TEMP/50(T1) **BEGIN BULK** TSTEPNL,100,490,10.0,1 \$ GRID,1,,0.0,0.0,0.0 GRID,2,,0.0,0.0,1.0 GRID,3,,1.0,0.0,1.0 GRID,4,,1.0,0.0,0.0 GRID,5,,0.0,1.0,0.0 GRID,6,,0.0,1.0,1.0 GRID,7,,1.0,1.0,1.0 GRID,8,,1.0,1.0,0.0 GRID,50,,50.0,50.0,50.0 GRID,99.,99.0,99.0,99.0

\$ CHEXA,1,5,1,2,3,4,5,6,+CHX1 +CHX1.7.8 PSOLID,5,15 MAT4,15,204.0,896.0,2707.0,1000.0 \$ CHBDYE,10,1,1 CHBDYE,20,1,2 CHBDYE, 30, 1, 3 CHBDYE,40,1,4 CHBDYE,50,1,5 CHBDYE,60,1,6 \$ CONV,10,35,,50,99 CONV,20,35,,50,99 CONV,30,35,,50,99 CONV,40,35,,50,99 CONV,50,35,,50,99 CONV,60,35,,50,99 PCONV,35,15,0,0.0 DLOAD,200,1.0,1.0,300,1.0,400 TLOAD1,300,500,,,700 TABLED1,700,,,,,,+TBD700 +TBD700,0.0,1.0,1000.0,1.0,ENDT QBDY3,500,50000.0,,10,THRU,60,BY,10 \$ TLOAD1,400,600,,,800 TABLED1,800,,,,,,+TBD800 +TBD800,0.0,0.0,1000.0,0.0,2000.0,1.0,5000.0,1.0,+TBD801 +TBD801,ENDT TEMPBC,600,TRAN,1.0,50 SPC,10,99,,0.0 TEMP,20,99,0.0 TEMPD,20,0.0 ENDDATA

82

Example 7d using SOL 400

SOL 400 CEND TITLE = EXAMPLE 7D ANALYSIS = HTRAN THERMAL = ALL FLUX = ALLSPCF = ALLOLOAD = ALL SPC = 10IC = 20TSTEPNL = 100DLOAD = 200OUTPUT(XYPLOT) XTITLE = TIME, SECONDS YTITLE = GRID 1 TEMPERATURE DEGREES CELSIUS TCURVE = GRID 1 TEMPERATURE VS. TIME XYPLOT TEMP/1(T1) XTITLE = TIME. SECONDS YTITLE = GRID 50 TEMPERATURE DEGREES CELSIUS TCURVE = GRID 50 TEMPERATURE VS. TIME XYPLOT TEMP/50(T1) **BEGIN BULK** TSTEPNL,100,490,10.0,1 \$ GRID,1,,0.0,0.0,0.0 GRID,2,,0.0,0.0,1.0 GRID,3,,1.0,0.0,1.0 GRID,4,,1.0,0.0,0.0 GRID,5,,0.0,1.0,0.0 GRID,6,,0.0,1.0,1.0 GRID,7,,1.0,1.0,1.0 GRID,8,,1.0,1.0,0.0 GRID,50,,50.0,50.0,50.0 GRID,99,,99.0,99.0,99.0 \$ CHEXA,1,5,1,2,3,4,5,6,+CHX1 +CHX1,7,8 PSOLID,5,15

MAT4,15,204.0,896.0,2707.0,1000.0

\$

CHBDYE,10,1,1

CHBDYE,20,1,2

CHBDYE, 30, 1, 3

CHBDYE,40,1,4 CHBDYE,50,1,5 CHBDYE,60,1,6 CONV,10,35.,50,99 CONV,20,35,,50,99 CONV,30,35,,50,99 CONV,40,35.,50,99 CONV,50,35,,50,99 CONV,60,35,,50,99 PCONV,35,15,0,0.0 DLOAD,200,1.0,1.0,300,1.0,400 TLOAD1,300,500,..,700 TABLED1,700,,,,,,+TBD700 +TBD700,0.0,1.0,1000.0,1.0,ENDT QBDY3,500,50000.0,,10,THRU,60,BY,10 SPC1,10,,50 SPCD,600,50,,1.0 TLOAD1,400,600,,1,800 TABLED1,800,,,,,,+TBD800

+TBD800,0.0,0.0,1000.0,0.0,2000.0,1.0,5000.0,1.0,+TBD801 +TBD801,ENDT

\$TEMPBC,600,TRAN,1.0,50 SPC,10,99,,0.0 TEMP,20,99,0.0 TEMPD,20,0.0 \$

ENDDATA

83

XSoftware

Using the SPCD to enforced temperature as a function of time

لصصف

DLOAD,200,1.0,1.0,300,1.0,400

TLOAD1,300,500,,,700 TABLED1,700,,,,,,+TBD700 +TBD700,0.0,1.0,1000.0,1.0,ENDT QBDY3,500,50000.0,,10,THRU,60,BY,10 \$

TLOAD1,400,600,,,800

TABLED1,800,,,,,,+ +,0.0,0.0,1000.0,0.0,2000.0,1.0,5000.0,1.0,+ +,ENDT

TEMPBC,600,**TRAN**,1.0,**50**

SPC,10,99,,0.0 TEMP,20,99,0.0 TEMPD,20,0.0

> Please note that a type 1 is required in field 5 on either the TLOAD1 or TLOAD2 card in a SOL 400 run

DLOAD,200,1.0,1.0,300,1.0,400 TLOAD1,300,500,,,700 TABLED1,700,,,,,,+TBD700 +TBD700,0.0,1.0,1000.0,1.0,ENDT QBDY3,500,50000.0,,10,THRU,60,BY,10 S SPC1,10,.50 SPCD,600,50,,1.0 TLOAD1,400,600,,1,800 TABLED1,800,,,,,,+ +,0.0,0.0,1000.0,0.0,2000.0,1.0,5000.0,1.0,+ +,ENDT \$TEMPBC,600,TRAN,1.0,50 SPC,10,99,,0.0 TEMP,20,99,0.0 **TEMPD**,20,0.0 \$

84

Convert SOL159 into SOL400 when there is TEMPBC in the bulk data section

To Convert SOL 159 Models to SOL 400 Models

- 1. Executive Control Section change SOL 159 to SOL 400.
- Case Control Section replace ANALYSIS=HEAT by ANALYSIS=HTRAN, also add SPC if all temperature boundary conditions are transient (case 3b below).
- Bulk Data Section replace the "TRAN" type TEMPBC by SPC1 and SPCD. The details are explained below.
 - a. If all temperature boundary conditions are constant, no changes are required.
 - b. If all temperature boundary conditions are transient, replace TEMPBC by SPC1 and SPCD and modify TLOAD1.

```
For example, replace the following entries of SOL 159 model:
TLOAD1,40,400,,,4000
TEMPBC,400,TRAN,300.0,99
```

```
by
```

```
SPC = 111 (Case CC)
```

```
TLOAD1,40,400,,1,4000
SPCD,400,99,,300.0
SPC1,111,,99
```

85

Convert Sol 159 into SOL 400:

c. If a model has both constant and transient temperature boundary conditions, all boundary conditions must be converted into SPC1 and SPCD.

For example, replace the following entries of SOL 159 model:

DLOAD,222,1.0,1,0,30,1.0,40 TLOAD1,40,400,,,4000 TEMPBC,400,TRAN,300.0,99 SPC,111,98,,20.0

by

DLOAD,222,1.0,1,0,30,1.0,40, **1.0,50** TLOAD1,40,400,,**1**,4000 SPCD,400,99,,300.0 SPC1,111,,99 TLOAD1,50,500,,**1**,5000 SPCD,500,98,,20.0 SPC1,111,,98 TABLED1,5000,,,,,,,,,,,,0.0,1.0,1000.0,1.0,ENDT

وعقع

Convert from SOL 153 into SOL 400

SOL 153 **\$ Direct Text Input for Executive Control** CEND ANALYSIS = HEAT TITLE = workshop 1 ECHO = NONETEMPERATURE(INITIAL) = 1 Data SUBCASE 1 \$ Subcase name : Default SUBTITLE=Default NLPARM = 1SPC = 1LOAD = 2THERMAL(SORT1, PRINT)=ALL FLUX(SORT1,PRINT)=ALL OLOAD(SORT1,PRINT)=ALL SPCFORCES(SORT1, PRINT)=ALL \$ Direct Text Input for this Subcase **BEGIN BULK**

SOL 400 \$ Direct Text Input for Executive Control CEND ANALYSIS = HSTAT TITLE = workshop 1 ECHO = NONE**TEMPERATURE(INITIAL) = 1** SUBCASE 1 **\$** Subcase name : Default SUBTITLE=Default NLPARM = 1SPC = 1LOAD = 2THERMAL(SORT1, PRINT)=ALL FLUX(SORT1,PRINT)=ALL OLOAD(SORT1, PRINT)=ALL SPCFORCES(SORT1, PRINT)=ALL **\$ Direct Text Input for this Subcase BEGIN BULK**

MSC X Software

End of presentation

Thank you

New nonlinear elements (1D and 2D)

Nast Type	N ID	REq nodes	Type Code	INT CODE	MARC ID	NL_PROP
ROD	2 2 2 2	2	ROD	L	36	PRODN1
Shell (3D)		500	En Se	12 - Carrows	in the s	
CQUAD4	33	4	DCT	L	85	PSHLN1
CQUAD8	64	8	DCT	Q	86	PSHLN1
CTRIA3	74	3	DCT	L	50	PSHLN1
Planar(2D)		5		282		5
CQUAD4	139	4	PLST	L	39	PSHLN2
CTRIA3	162	3	PLST	L	37	PSHLN2
CQUAD8	164	8	PLST	Q	41	PSHLN2
CTRIA6	167	6	PLST	Q	131	PSHLN2
Planar Composite elements						Bu
CQUAD4	139	4	COMP	L	177	PLCOMP
CQUAD8	164	8	COMP	Q	179	PLCOMP
Membrane elements		5				
CQUAD4	33	4	MB	L	198	PSHLN1
CTRIA3	74	3	MB	L	196	PSHLN1
CQUAD8	64	8	MB	Q	199	PSHLN1
CTRIA6	75	6	MB	Q	197	PSHLN1
C SimEnterprise *	0-			2007 		o {

MSC SimEnterprise

New nonlinear elements (Solid)

Nast Type	N ID	REq nodes	Type Code	INT CODE	MARC ID	NL_PROP
Solid elements	32	3				
CHEXA	67	8	SOLI	L	43	PSLDN1
Se la	67	20	SOLI	Q	44	PSLDN1
CTETRA	39	4	SOLI	L	135	PSLDN1
	39	10	SOLI	Q	133	PSLDN1
CPENTA	68	6	SOLI	L	137	PSLDN1
Solid composite elements			S	Sa		
CHEXA	67	8	SLCO	L	175	PCOMPLS
	S	20	SLCO	Q	176	PCOMPLS

عصک ا

PSHLN1 – Nonlinear property extension for PSHELL or PCOMPG entry

PSHLN1 - Nonlinear property extension for PSHELL or PCOMPG entry

PSHLN1	PID	MID1	MID2	and the	ANALY			
	C3	BEH3	INT3	ВЕНЗН	INT3H			TDIST
	C4	BEH4	INT4	BEH4H	INT4H			TDIST
6	C6	BEH6	INT6	BEH6H	INT6H	S	12	00
	C8	BEH8	INT8	BEH8H	INT8H	3	So of	TDIST

ANALY is on the field 6:

Where ANALY =

IS (default) -and NASTRAN heat transfer element

IH - NASTRAN structure element NASTRAN structure element and MARC heat transfer element

TDIST, Field 9: Temperature distribution for the thick shell element

In the MDR3 version only constant will be supported.

Temperature distribution: 0=constant, 1=linear, 2=quadratic,

3=piecewise quadratic if not composite; default=0}

BEHi: default: DCT

DCT points to the 3D SHELL elements,

MB points to the membrane heat transfer elements

PSHLN2 – Nonlinear property extension for a PLPLANE entry

PSHLN2 – Nonlinear property extension for a PLPLANE entry Descriptions: Specifies nonlinear properties for plane strain, plane stress, or axisymmetric elements

			5				
PSHLN2	PID	MID	DIRECT	T	ANALY		5
	C3	BEH3	INT3	ВЕНЗН	INT3H		
S	C4	BEH4	INT4	BEH4H	INT4H	25	5
	C6	BEH6	INT6	ВЕН6Н	INT6H	P	
	C8	BEH8	INT8	BEH8H	INT8H		BI

Field

BEHi: default: PLST

PLST points to plane strain heat transfer element

AXSO points to the axisymmetric heat transfer element

92

PSLDN1– Nonlinear property extension for a PSOLID

PSLDN1– Nonlinear property extension for a PSOLID Descriptions: Specifies nonlinear properties for solid elements

		5		5582				
	PSLDN1	PID	MID	DIRECT		ANALY		
	1	C4	BEH4	INT4	BEH4H	INT4H		£.
1	S	C6	BEH6	INT6	ВЕН6Н	INT6H	2	0
	La	C8	BEH8	INT8	BEH8H	INT8H	5	
		C10	BEH10	INT10	BEH10H	INT10H		S C F
		C20	BEH20	INT20	BEH20H	INT20H		3

Field

BEHi: default: SOLI

SOLI points to solid heat transfer elements

COMPS points to solid composite heat transfer elements

3D composite heat transfer element

The composite heat transfer elements points to the PCOMPLS, and it can points to MAT4 or MAT5 heat transfer material cards.

PCOMPLS	PID	DIRECT	CORDM	SB	ANALY		
	C8	BEH8	INT8	BEH8H	INT8H		30
S.	C20	BEH20	INT20	BEH20H	INT20H		20
	ID1	MID1	T1	THETA1	S	Les s	N°
	ID1	MID2	T2	THETA2			Cr.

pcompls,1,-1,,,ih

,c8,

,c20,

,1,1,0.01

,2,2,0.02

How do I call out these new nonlinear formulations?

psldn1,1,1,,,ih PSOLID 1 1 0 \$ Pset: "pcb" will be imported as: "psolid.1" CHEXA 5958 1 391 3742 3743 422 7355 7358 7357 7356

PSHELL 1 1 1. pshln1,1,1,,,ih \$ Pset: "plate" will be imported as: "pshell.1" CQUAD4 1 1 1 2 5 4