

Positionsabweichungen Anlegen und Auswerten

FAQ 29 April 2024 Created with Version 13.0.5.1

Information about this document

All rights, including translation in foreign languages, are reserved. It is not allowed to reproduce any part of this document in any way without written permission of Hexagon.

Parts of this document may be automatically translated.

Document History

Version	Date	Author(s)	Modifications / Remarks	
		RA		
	17.10.2021	GA	Rework / Design	

CONTENTS

1	Z	weidir	nensionale Positionsabweichungen	6
	1.1	Vekt	or der Soll-Position	8
	1.2	Vekt	or der Ist-Position	8
	1.3	Posi	tionsabweichung als Differenz der Ortsvektoren	.10
	1	.3.1	Bestimmung der Länge des Differenzen-Vektors (Ist-Abweichung der Position)	.10
	1	.3.2	Prüfen der Anforderung an die Positionsabweichung	.12
2	F	Positio	nsabweichungen mit qs-STAT (Version 11) auswerten	13
	2.1	Num	erische Auswertung	20
	2.2	Graf	ische Auswertung	22
3	A	Arten d	er Fähigkeitsberechnung für Positionsabweichungen	23
	3.1	Eins	tellungsoptionen für die Berechnungsart (qs-STAT/destra)	24
	3.2	Eind	imensionale Auswertung des Abweichungsbetrags	26
	3.3	Bere	chnungsart "MPo max. Abweichungsbetrag"	29
	3.4	Bere	chnungsart "MPo2 max. Wahrscheinlichkeitsellipse"	32
	3	8.4.1	Die zweidimensionale Normalverteilung	.33
		3.4.1.1	Parameterschätzung zur 2D-NV für den Beispiel-Datensatz	35
	3	8.4.2	Bestimmung der Kenngröße Po nach DIN ISO 22514-6	.37
	3	8.4.3	Bestimmung der Kenngröße Pok nach DIN ISO 22514-6	.42
	3.5	Bere	echnungsart "MPo3 max. Probability Ellipse / Line"	.46
	3	8.5.1	Bestimmen der Kenngröße Po	.46
	3	8.5.2	Bestimmen der Kenngröße Pok	47
	3.6	Meth	node MPo A1 [AFNOR E60-181]	.49
4	A	Anhang]	52
	4.1	Ermi	itteln der statistischen Distanz für die P_{Ok} -Ellipse	52
	4	.1.1	Drehung des Koordinatensystems	53
	4	.1.2	Bestimmen des Vektors von der Sollpositon zur Mittelwert-Position M	54
	4	.1.3	Bestimmen des Winkels δ des Vektors l im n - m -Koordinatensystem	.55
	4	.1.4	Koordinaten des Vektors <i>l</i> im <i>n-m</i> -Koordinatensystem	56
	4	.1.5	Bestimmen der statistischen Distanz k vom Mittelwert M zum Toleranzkreis	58

Vorwort

In diesem Dokument beschäftigen wir uns mit den **zweidimensionale**n Positionsabweichungen. Wir betrachten hier **nicht** die **eindimensionale**n **Positionsabweichungen** für Linien und Ebenen.

Im **ersten Kapitel** starten wir mit **Grundlagen**. Anhand eines Beispiels betrachten wir, wie eine Anforderung für eine Positionsabweichung in einer technischen Zeichnung dargestellt und wie diese zu interpretieren ist. Auch klären wir die Frage, wie wir von den Positions-Messergebnissen zu den Werten der Positionsabweichungsbeträge gelangen.

In dem **zweiten Kapitel** setzen wir uns mit der **Handhabung** auseinander, also wie ein Positionsmerkmal im Programm qs-STAT angelegt wird, wie die Positionstoleranz einzugeben ist und wie wir die Auswertung ausführen.

Die Berechnungsdetails für das Bestimmen der Fähigkeitskennwerte finden wir im dritten Kapitel.

Hinweis: Für die Auswertung müssen wir bedenken, dass die Berechnungsoptionen für die Positionstoleranzen in der Auswertestrategie unternehmensspezifisch unterschiedlich eingestellt sein können. Es kann auch sein, dass eine so angepasste Auswertestrategie überhaupt keine Berechnung zulässt. Sollte dies auf die persönliche Situation eines Lesers zutreffen, erhält dieser auch keine Auswertungsergebnisse für die Positionsabweichungen.

Die Firma Q-DAS liefert die Programme qs-STAT und destra im Modul Stichprobenanalyse mit der Auswertestrategie "Q-DAS Machine Capability (06/2013)" und im Modul Prozessanalyse mit der Auswertestrategie "Q-DAS Process Capability (06/2013)" aus (Stand: Frühjahr 2016). Beide Strategien beinhalten die Berechnung und Fähigkeitsbeurteilung.

Das vorliegende Fallbeispiel wurde mit dem Programm qs-STAT zu großen Teilen in dem Modul

"Stichprobenanalyse" mit der Auswertestrategie "Q-DAS Machine Capability (06/2013)" erstellt. Zum Teil wurden temporär veränderte Auswertestrategien verwendet, um die Berechnungsoptionen für die Positionsabweichungen verstellen zu können. Die davon betroffenen Abschnitte enthalten entsprechende Hinweise.

1 Zweidimensionale Positionsabweichungen

In diesem Kapitel gehen wir der Frage nach, was eine Positionsabweichung ist. Gegeben sei der folgende, auf die Position einer Bohrung bezogene Auszug aus einer technischen Zeichnung (als nicht normgerechte Skizze):

Abbildung 1-1: Skizze einer tolerierten Position für eine Bohrung in einer Bohrplatte

Anhand der Skizze erkennen wir, dass die Position der Bohrung – also der Mittelpunkt des Bohrloches – toleriert worden ist. Der Konstrukteur hat vorgesehen, dass für die Herstellung und messtechnische Positionsbestimmung der Primärbezug die Kante A, der Sekundärbezug die Kante B und der Tertiärbezug die Kante C ist.

Das *Durchmesser-Symbol* \varnothing vor der *Positionstoleranz* $t_{PS} = 0,2 \text{ mm}$ besagt, dass die Positionsabweichung in der Ebene radial in *jede Richtung* auftreten darf. Unsere Definition ist jedoch noch unvollständig, denn die Tolerierung ist hier dreidimensional: Die tolerierte Positionsabweichung gilt für die Gesamtlänge der Bohrung, also in die Tiefe der Abbildung 1-1 hinein.

In der Abbildung 1-2 ist die **theoretisch exakte Soll-Mittenachse der Bohrung** als **Schnittlinie der beiden grün eingezeichneten Symmetrie-Ebenen** sichtbar. Um diese Ideallage der Mittenachse ist **in roter Farbe der Toleranz-Zylinder** mit dem Durchmesser *t*_{PS} eingezeichnet. Solange die hergestellte Mittenachse der Bohrung auf ihrer gesamten Länge innerhalb der Mantelfläche dieses roten Toleranz-Zylinders liegt, handelt es sich um eine erlaubte Positionsabweichung.

Abbildung 1-2: Veranschaulichung der Positionstoleranz als Toleranz-Zylinder (rot) mit dem Durchmesser t_{Ps}

In der Regel erhalten wir vom Messsystem als Messergebnis einer Positionsabeichungsmessung allein die X- und Y-Koordinate der Ist-Position (x_{ist} | y_{ist}) zu der *größten* gemessenen Positionsabweichung, also *ohne* die Angabe der Tiefeninformation (hier: Z-Koordinate). Hierbei haben wir stillschweigend vorausgesetzt, dass ein Messsystem für das Bestimmen der Positionsabweichung tatsächlich mehrere Messungen in verschiedenen Tiefen-Ebenen des Bohrloches ausführt, aber nur das eine Ergebnis der maximalen Abweichung als 2D-Information ausgibt.

Da die Tiefeninformation entfällt, bestimmen wir die Positionsabweichung als Differenz zwischen der *Ist*- und *Soll-Position* mit der Vektorrechnung in der Ebene.

1.1 Vektor der Soll-Position

Die Soll-Position der Bohrung erhalten wir als Vorgabe aus der Zeichnung und hat in unserem Zahlenbeispiel die folgenden Punkt-Koordinaten:

Abbildung 1-3: Nicht maßstäblich gezeichnete Skizze zur Veranschaulichung des Vektors für die Soll-Position, mit rot eingezeichnetem Toleranzkreis für die Positionsabweichung

Nun wurde eine Bohrplatte vermessen...

1.2 Vektor der Ist-Position

Das Messergebnis für die Koordinaten der Ist-Position sei der Vektor:

 $\vec{P}_{ist} = \begin{pmatrix} x_{Ist} = 30,05 \ mm \\ y_{Ist} = 20,04 \ mm \end{pmatrix}$

Abbildung 1-4: Nicht maßstäblich gezeichnete Skizze zur Veranschaulichung der beiden Positions-Vektoren für die Ist- und Soll-Position und des Differenzen-Vektors d für die Positionsabweichung

Software documentation

1.3 Positionsabweichung als Differenz der Ortsvektoren

Den Vektor der Positionsabweichung erhalten wir aus der Differenz der beiden Ortsvektoren für die Ist- und Soll-Position:

 $\vec{P}_{ist} - \vec{P}_{soll} = \begin{pmatrix} \Delta x = x_{ist} - x_{soll} = 30,00 \ mm \\ \Delta y = y_{ist} - y_{soll} = 20,00 \ mm \end{pmatrix} = \begin{pmatrix} 30,05mm - 30,00 \ mm \\ 20,04mm - 20,00 \ mm \end{pmatrix} = \begin{pmatrix} 0,05 \ mm \\ 0,04 \ mm \end{pmatrix}$

Die kürzeste Entfernung zwischen der Ist- und Soll-Position entspricht der Länge dieses Vektors.

1.3.1 Bestimmung der Länge des Differenzen-Vektors (Ist-Abweichung der Position)

Abbildung 1-5: Nicht maßstäblich gezeichnete Skizze zur Veranschaulichung des Differenzen-Vektors d, der die Abweichung der Ist-Position von der Soll-Position beschreibt

Der Betrag oder die Länge des Vektors \vec{d} ist die euklidische Distanz zwischen der *Ist*- und der *Soll- Position:*

$$|\vec{d}| = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{(x_{ist} - x_{soll})^2 + (y_{ist} - y_{soll})^2}$$

Setzen wir die Werte aus unserem Zahlenbeispiel ein, so erhalten wir: $|\vec{d}| = \sqrt{(0,05^2 + 0,04^2)mm^2} \approx 0,06403mm$

 \vec{d}

In der Regel verwenden wir nicht den einfachen Betrag | | des Vektors, da dieser ja lediglich die *radiale* Entfernung zwischen der Ist- und Soll-Position ausdrückt. Die *Positionstoleranz* t_{PS} wird uns als Durchmesser angegeben. Daher ist es naheliegend und auch üblich, die beobachtete Positionsabweichung f_{PS} ebenfalls als Durchmesser auszugeben:

$$f_{PS} = 2 \cdot |\vec{d}| \approx 2 \cdot 0,06403mm = 0,12806mm$$

Hinweis: Wir können in der Auswertestrategie der Software einstellen, ob die berechneten Positionsabweichungen als *Radius* oder als *Durchmesser* ausgegeben werden sollen, können wir in der Auswertestrategie der Software einstellen (Administrator-Rechte erforderlich).

Zum Einsehen oder Ändern der aktuell aktiven Berechnungsoption wählen wir den Menübefehl:

Start | Auswertestrategie

Abbildung 1-6: Berechnungsoptionen für den Positionsabweichungsbetrag in der Software

Ist die Einstellung "keine Berechnung" aktiv, so werden keine Positionsabweichungsbeträge berechnet und daher auch nicht ausgegeben.

1.3.2 Prüfen der Anforderung an die Positionsabweichung

Mit dem "Abweichungsdurchmesser" f_{ps} aus Abschnitt 1.3.1 prüfen wir, ob die Anforderung an die Positionsabweichung erfüllt ist. Die Annahmebedingung lautet in Worten: Der beobachtete Istwert für die Positionsabweichung f_{ps} soll kleiner oder höchstens gleich dem Wert der Positionsabweichungstoleranz t_{PS} sein. Als Formel lässt sich dies "kurz und knackig" ausdrücken.

$f_{PS} \leq t_{PS}$

Ist die Bedingung erfüllt, so ist die aktuell gemessene Position "in Ordnung".

Allerdings ist das Beurteilen von einzelnen Einheiten nur sinnvoll, wenn wirklich jede Einheit geprüft und gemäß dem genannten Kriterium bewertet werden kann. Eine derartige 100 %-Prüfung der Einheiten ist aufgrund der zu hohen Prüfdauern und –kosten oft nicht zu verwirklichen.

Ein Ausweg stellt die Überwachung mit Stichproben dar: Wir entnehmen in regelmäßigen Zeitabständen oder nach einer festen Anzahl Einheiten eine Stichprobe mit z.B. n = 5 Einheiten und prüfen anhand dieser Stichprobe, ob der Prozess die *Positionsabweichungen* f_{ps} "prozesssicher" innerhalb der *Positionstoleranz* t_{ps} gefertigt hat. Allerdings ist das Anwenden der statistischen Überwachung mit Stichproben an die Anwendungsvoraussetzung gebunden, dass der Herstellprozess die Positionen "prozessfähig" erzeugen kann.

2 Positionsabweichungen mit qs-STAT auswerten

Im ersten Schritt legen wir im Modul Stichprobenanalyse des Programmes qs-STAT ein Positionsmerkmal von Hand an.

Hinweis: Viele Messmaschinen-Hersteller statten ihre Messmaschinen mit einer Schnittstelle für das Q-DAS ASCII-Transferformat aus, so dass wir Anwender uns nicht um das manuelle Anlegen und Eingeben kümmern müssen.

Wir starten das Programm qs-STAT und wählen Start | Modulauswahl | Stichprobenanalyse

Nun legen wir ein neues Merkmal für die Positionsabweichung an. Wir wählen Datei | Neu

Es erscheint das Fenster "neue Merkmale anlegen..."

create new characteristics	×
Characteristics Start window	
variable characteristics 0 - new characteristics Group Characteristics 0 - Number of groups	
Positional tolerances 1	
3D-Positional tolerances 0 new 3D-Positional tolerances Default	
attribute characteristics 0 Image: Characteristics Default Image: Characteristics 0 Image: Characteristics Default Image: Characteristics 0 Image: Characteristics 0	

Abbildung 2-1: Fenster "neue Merkmale anlegen" mit der aktivierten Option "1 neue Positionstoleranz"

In dem Fenster stellen wir die Option Positionstoleranzen auf den Wert 1 ein und bestätigen unsere Auswahl mit OK. Nun erscheint die folgende Programmansicht:

Software documentation

Abbildung 2-2: Ansicht des Programms nach dem Anlegen einer neuen Positionstoleranz

Wie anhand der Abbildung 2-2 in dem Fenster "Teile- / Merkmalsliste" zu sehen ist, handelt es sich bei der Positionstoleranz um eine Merkmalsgruppe, welche drei Merkmale umfasst:

Abbildung 2-3: Merkmalsgruppe Positionstoleranz – bestehend aus dem übergeordneten Merkmal Positionsabweichung und den beiden untergeordneten Merkmalen für Positionsmesswerte je Koordinate

Nun klicken wir auf das Fenster "Teilemaske" (war dieses geschlossen, klicken wir *Start* | *Teilemaske*) und füllen es wie folgt aus:

QDas-1507

3 Parts mask							
Part number	Part description		Part abbreviation				
Ex PD	Positional deviation demonstration						
Control item Produ no documentation ~	uct	Reason for Test					
Part remark							

Abbildung 2-4: Fenster "Teilemaske", in das wir nur die Teilenummer "Ex PD" und die Teilebezeichnung "Positional deviation demonstration" eingeben

Wir schließen das Fenster "Teilemaske" mit einem Klick auf OK. Wir sehen nun das Fenster "Merkmalsmaske". Falls wir dieses Fenster versehentlich schon geschlossen haben, öffnen wir es erneut mit dem Befehl Start | Merkmalsmaske.

Um leichter erkennen zu können, zu welchem der drei Merkmale wir die Felder in der Merkmalsmaske bearbeiten, blenden wir die Merkmalsliste ein. Dazu klicken wir im Menü auf:

Grafikeinstellungen | Symbol "Info"

Es erscheint das Fenster "Info", in dem wir die Option Merkmalsliste aktivieren. Wir bestätigen die Einstellung mit OK.

Info		
Chara	acteristics list	
		Color
		Туре
	ОК	Cancel

Abbildung 2-5: Fenster Info mit aktivierter Merkmalsliste

Durch das Aktivieren sehen wir am linken Fensterrand des Fensters "Merkmalsmaske" die Merkmalsliste, in der die Merkmale mit der schon bekannten Gruppenstruktur dargestellt sind.

🕙 Characteristics mask						
🔊 as-STAT	Characteristic					
1 Ex PD Positional dev	Number	Description			Control Item	
	PD	Positional Deviation			no documen	tation required \sim
<u> </u>	Class	Char.Abbr. 10	0% measurer Measured	d quantity Characteris	tic Type Recor	rding Type
····· 💆 1.3 1.2 1.2	significant ~			Position (V variable	v manu	ual ~
	Nominal value	Unit Dec mm 3	cimal PI.	value Calcul	ated Tolerance	Tool wear type undefined ~
	Up.Spec.Lim.	Up.Allowance	Up.nat.bound. Up.Pla	us.Lim. Upper	Scrap Limit	Upper acceptance limit
	Lo.Spec.Lim.	Lo.Allowance	Low.nat.bound Lo.Plan	us.Lim.	Scrap Limit	Lower acceptance limit
	Subgroup size	Subgroup type	Subgr.incid	Numbe	er of classes	Upper class limit
	Events Catalogue			Process Parameter Catalog	gue	Lower Class limits
	Events Catalogue, Meas	sure catalogue, Cause catalo	ogue 🗸	Process parameter catalo	gue 🗸	
	Machine catalogue	Cavity catalogue	Operator catalo	gue Gage catalog	jue	
	Machine Catalogue	✓ Cavity Catalogue	✓ Operator Catal	ogue 🗸 Gage Catalo	ogue 🗸	
	Characteristics mask I sevent for the se	•••••••••••••••••••••••••••••	Characteristics mask Is positional de Is positional value In mm In the positional value In the positional va	Characteristics mask Image: STAT Image: State in the state in	• Characteristics mask • ga-STAT • ↓ 12 pp 0 positional de • ↓ 12 pp 1 (naided and the second and the seco	Characteristics mask • ga-STAT • file PD Positional de • file PD 1 (n m • file PD 1 (n m

Abbildung 2-6: Ansicht des Fensters "Merkmalsmaske" mit aktivierter Option "Merkmalsliste"

Wir klicken in der Merkmalsliste auf das übergeordnete Merkmal für die Positionsabweichung, wodurch wir den Zugriff auf die Eigenschaften-Felder dieses Merkmals erhalten. Darin tragen wir ein:

Feldbezeichnung	Eingabewert	Bemerkung		
Nummer	PD			
Bezeichnung	Positional Deviation			
Einheit	mm	Eintrag schon vorhanden		
Messgröße	Position (Betrag)	Eintrag schon vorhanden		

Nun wechseln wir mit einem Mausklick in der Merkmalsliste auf das erste untergeordnete Merkmal:

🕙 Characteristics mask							
🔊 as-STAT	Characteristic						
🖃 🎤 1 Ex PD Positional dev	Number	Description				Control Item	
👘 🕂 🕂 🕂 🕂 🕂	M1.X.Pos.	M1.X Actual Position				no documer	ntation required 🛛 🗸
↓ 1.2 M1.XF ↓ 1.3 1.2 1.2	Class significant ~	Char.Abbr. 10	0% measurer M	easured quantity 🔨 X coordinate 🗸 🗸	Characteristi variable	c Type Reco	irding Type
	Nominal value	Unit Dec mm 3	cimal PI.	Target value	Calculate 0,200	ed Tolerance	Tool wear type undefined ~
	Up.Spec.Lim.	Up.Allowance	Up.nat.bound.	Up.Plaus.Lim.	Upper S	crap Limit	Upper acceptance limit
	30,100						
	Lo.Spec.Lim.	Lo.Allowance	Low.nat.bound	Lo.Plaus.Lim.	Lower S	Scrap Limit	Lower acceptance limit
	29,900						
	Subgroup size	Subgroup type	Subgr.incid		Number	of classes	Upper class limit
	5 🗘	fixed ~	0 🌐				

Abbildung 2-7: Ansicht des Fensters Merkmalsmaske für das erste untergeordnete Merkmal (Eingabe schon erfolgt)

Wir tragen hier ein:

Feldbezeichnung	Eingabewert	Bemerkung
Nummer	M1.X.Pos.	
Bezeichnung	M1.X Actual Position	
Obere Spezifikationsgrenze	30,1	
Untere Spezifikationsgrenze	29,9	
Einheit	mm	Eintrag schon vorhanden
Messgröße	X-Koordinate	

Mit Bezug auf die Beispiel-Skizze in der Abbildung 1-1 auf der Seite 3 wissen wir, dass die *Soll-Position* des Bohrlochs die Punkt-Koordinaten ($X_{Soll} = 30 \text{ mm} \mid Y_{Soll} = 20 \text{ mm}$) hat und die zugehörige *Positionstoleranz* $t_{PS} = 0,2 \text{ mm}$ beträgt. Im Programm müssen wir diese Positionstoleranz gemäß dem folgenden Schema

Sollwert $\pm t_{PS}/2$

für jede der Koordinaten-Achsen eingeben.

Für die X-Koordinate ergeben sich daher die folgenden Spezifikationsgrenzen:

$$OSG = X_{Soll} + \frac{t_{ps}}{2} = 30mm + \frac{0.2mm}{2} = 30.1mm$$

$$USG = X_{Soll} - \frac{t_{ps}}{2} = 30mm - \frac{0.2mm}{2} = 29.9mm$$

Wir wechseln auf das zweite untergeordnete Merkmal und füllen die zugehörigen Felder aus:

Characteristics mask as-STAT 	Characteristic Number M1.Y.Pos	escription Control Item I1.Y Actual Positon no documentation required				entation required V	
	Class important ~	Char.Abbr.	100% measurer	leasured quantity ↓ Y coordinate ∨	Characteristi variable	c Type Red	cording Type anual V
	Nominal value	Unit mm	Decimal Pl. 3 $\stackrel{\clubsuit}{\checkmark}$	Target value	Calculat 0,200	ed Tolerance	Tool wear type undefined ~
	Up.Spec.Lim. 20,100	Up.Allowance	Up.nat.bound.	Up.Plaus.Lim.	Upper S	crap Limit	Upper acceptance limit
	Lo.Spec.Lim. 19,900	Lo.Allowance	Low.nat.bound	Lo.Plaus.Lim.	Lower S	Scrap Limit	Lower acceptance limit
		_			Number	of classes	Upper class limit

Abbildung 2-8: Ansicht des Fenster Merkmalsmaske nach der Auswahl des dritten Merkmals (Werte schon eingegeben)

Feldbezeichnung	Eingabewert	Bemerkung
Nummer	M1.Y.Pos.	
Bezeichnung	M1.Y Actual Position	
Obere Spezifikationsgrenze	20,1	
Untere Spezifikationsgrenze	19,9	
Einheit	mm	Eintrag schon vorhanden
Messgröße	Y-Koordinate	

Wieder gilt mit dem Bezug auf die Beispiel-Skizze in der Abbildung 1-1 auf der Seite 3, dass die *Soll-Position* des Bohrlochs die Punkt-Koordinaten ($X_{Soll} = 30 \text{ mm} \mid Y_{Soll} = 20 \text{ mm}$) hat und die zugehörige *Positionstoleranz* $t_{PS} = 0,2$ mm beträgt. Im Programm müssen wir die Positionsabweichungstoleranz t_{PS} für jede der Koordinaten-Achsen gemäß dem Schema

Sollwert $\pm t_{PS}/2$

eingeben.

Für unsere Y-Koordinate gilt daher:

$$OSG = Y_{Soll} + \frac{t_{ps}}{2} = 20mm + \frac{0.2mm}{2} = 20.1mm$$

$$USG = Y_{Soll} - \frac{t_{ps}}{2} = 20mm - \frac{0.2mm}{2} = 19,9mm$$

Das Programm berechnet aus den eingegebenen Spezifikationsgrenzen der Koordinaten-Achsen die Toleranz für das übergeordnete Merkmal "Positionsabweichung". D.h., wir brauchen **für das übergeordnete Merkmal "Positionsabweichung" keine Spezifikationsgrenzen eingeben**.

Unser nächster Schritt ist die Eingabe der Positions-Messergebnisse in das Fenster "Wertemaske", dass wir wie folgt aufrufen:

Start | Wertemaske

Values mask							×
Characteristic					Transformatio	n	
Number	Description		Up.Spec.Lim.	Lo.Spec.Lim.	Factor	Constant	_
M1.Y.Pos	M1.Y Actu	al Positon	20,100	19,900	1	0	
Position	nal Deviation	M1.X Actu	ual Positon	M1.Y Actual	Positon		^
1		30,050		20,04			
2							
2		30,050		20,04			

Abbildung 2-9: Ansicht des Fensters Wertemaske mit dem ersten eingegebenen Wertepaar der gemessenen Ist-Positionen der Bohrung (X- und Y-Koordinate)

Die erste Spalte mit der Bezeichnung "Positional Deviation" lassen wir leer. Es handelt sich ja um das übergeordnete Merkmal der Positionsabweichung. Ist die Berechnungsoption für den Positionsabweichungsbetrag aktiviert, berechnet das Programm den Positionsabweichungsbetrag automatisch, sobald wir die Positions-Messergebnisse eingegeben haben:

M1.X Actual Postion = 30,05 mm und M1.Y Actual Postion = 20,04 mm.

🕙 Values mask						- 🗆	×
Characteristic					Transformat	tion	
Number M1.Y.Pos	M1.Y Actu	al Positon	Up.Spec.Lim. 20,100	Lo.Spec.Lim. 19,900	Factor 1	Constant 0	
Positional I	Deviation	M1.X Actu	al Positon	M1.Y Actual	Positon		^
1 0,128		30,050		20,040			
2							

Abbildung 2-10: Ansicht der Wertemaske nach Bestätigung des zweiten Eingabewertes – Das übergeordnete Merkmal Positionsabweichung wird automatisch berechnet¹

¹ Sofern in der Auswertestrategie die Berechnung aktiviert ist, was in der hier verwendeten Auswertestrategie "Q-DAS Machine Capability (06/2013)" der Fall ist.

Jetzt haben wir gesehen, wie das Anlegen und Eingeben grundsätzlich funktioniert. Auf die Handeingabe weiterer Messergebnisse verzichten wir hier lieber und laden statt dessen eine entsprechend vorbereitete Datei mit 50 Wertepaaren:

Datei | Datei öffnen

In dem Datei-Dialogfenster wählen wir die Datei "Positional_Deviation_Example.dfq" aus und bestätigen unsere Auswahl mit dem Befehl "Öffnen".

2.1 Numerische Auswertung

Was viele Anwender bei einem ersten Kontakt mit den Positionstoleranzen verwirrt, ist die Tatsache, dass wir in unseren Programmen "qs-STAT" und "destra" für die Prozessfähigkeitsbewertung **nicht** die berechneten Positionsabweichungen verwenden. Grundsätzlich ist das Auswerten der Abweichungsbeträge in der Auswertestrategie einstellbar, was jedoch einen entscheidenden Nachteil hat:

Wir verlieren bei der Auswertung des Abweichungsbetrages die Information über das zweidimensionale Streuverhalten. Aus diesem Grund verwenden wir in unseren Standard- Auswertestrategien² in den Modulen "Stichprobenanalyse" und "Prozessanalyse" die Berechnungsart "MPo2 max. Wahrscheinlichkeitsellipse", bei dem das zweidimensionale Streuverhalten berücksichtigt ist.

Für die Auswertung wählen wir:

Ergebnisse | Formblätter

Es öffnet sich das Fenster "Formblatt – Darstellung 3", in dem die Auswertungsergebnisse für das übergeordnete Merkmal (*Positionsabweichung*) enthalten sind.

² Im Modul "Stichprobenanalyse" ist die Standard-Auswertestrategie "Q-DAS Machine Capability (06/2013)" und im Modul "Prozessanalyse" ist die Standard-Auswertestrategie "Q-DAS Process Capability (06/2013)".

Software documentation

Part no.	Ex	Ex PD Part d		Positional	Deviation Example
Char.No.	P	D	Char.Descr.	Positi	onal Deviation
Drawi	ng Values	Colle	ected Values		Statistics
Tm	0.100	x	0.0690	x	0.07680
LSL*	0.000	Xmin	0.008	s	0.0431
USL	0.200	Xmax	0.208	X _{50%}	0.07632
T*	0.200	R	0.200	X _{0.135%}	-0.00081 [rt]
Characteristics	C: unimportant	Neff	50	X99.865%	0.23057 [rt]
		n _{tot}	50	X _{up3} -X _{lo3}	0.23138 [rt]
		N <t></t>	49 / 98.00000%	p _{<t></t>}	99.32245 %
		n >ust	1/2.00000%	p >USL	0.67755%
		n <lsl< td=""><td></td><td>P<lsl< td=""><td></td></lsl<></td></lsl<>		P <lsl< td=""><td></td></lsl<>	
Model distributio	n			Weibu	ull distribution
Distr.regress.co	peff.		Ftot	: 0.9	99559428
Distr.regress.co	peff.		F25%	: 0.9	97230551
	Calculation method	ł	MPo2	max. probabil	ity ellipse
Potentia	l Capability index	Po	0.68 ≤ 0.84 ≤ 1.01	0	1.67
Critical	capability index	Pak	0.55 ≤ 0.72 ≤ 0.88	0	1.67
+	T	he requiremen	ts were not met (<u>P_o,P_o</u>	<u>k</u>)	┡
Den	nand Potential Capab	ility index	Po target		1.67
Der	mand Critical capabi	lity index	Pok target		1.67
	6	Q-DAS Mach	nine Capability (06/2013)	

Abbildung 2-11: Fenster "Formblatt – Darstellung 3" mit den Auswertungsergebnissen für das übergeordnete Merkmal Positionsabweichung

Die Details der Kennwert-Bestimmung nach der Berechnungsart "MPo2 max. Wahrscheinlichkeitsellipse" befinden sich im Abschnitt 3.4 auf der Seite 29.

Anhand der Abbildung 2-11 erkennen wir:

Der *Fähigkeitsindex* $P_o = 0.84$ ist kleiner als der *Vorgabewert* $P_{o_{min}} = 1.67$, daher ist die Anforderung nicht erfüllt. Die Ursache ist die zu große Streuung der Positionen.

Der *minimale Fähigkeitsindex* $P_{ok} = 0,72$ ist kleiner als der *Vorgabewert* $P_{ok_{min}} = 1,67$, daher ist auch diese **Anforderung nicht erfüllt**. Neben der zu großen Streuung ist auch die Mittelwertlage der Positionsmesswerte gegenüber der Soll-Position verschoben.

Insgesamt ist die Streuung der Bohrloch-Positionen zu groß. Wir können die Bohrloch-Positionen nicht "sicher" innerhalb der Positionstoleranz erzeugen.

2.2 Grafische Auswertung

Wir wählen den Menü-Befehl:

Grafiken | Positionstoleranzen | X-Y-Plot Position

Abbildung 2-12: Ansicht des Fensters x-y-Plot Position mit den Werten des Fallbeispiels.

In der Abbildung 2-12 ist in roter Linienfarbe der *Toleranzkreis* mit dem Durchmesser $t_{PS} = 0,2$ mm zu sehen. Die große grüne Streu-Ellipse gehört zu dem Kennwert P_o und die kleine grüne Streu-Ellipse gehört zu dem Kennwert P_{ok} . Für einzelne Details der Fähigkeitsberechnung siehe Abschnitt 3.4.

Weitere Grafiken für Positionstoleranzen erhalten wir mit den nachfolgend gelisteten Befehlen. Diese Grafiken sind für Datensätzen mit mehreren Positionsmerkmalen gedacht, wenn diese miteinander verglichen werden sollen:

Grafiken | Positionstoleranzen | Fähigkeitsindizes Grafiken |

Box-Plot Position

3 Arten der Fähigkeitsberechnung für Positionsabweichungen

In diesem Kapitel betrachten wir die vier in der Software verfügbaren Berechnungsarten für die Fähigkeitsbewertung von Positionsabweichungen. Alle in diesem Kapitel beschriebenen Einstellungen der Berechnungsart beziehen sich auf die Gesamtbewertung der Positionsabweichung-Merkmalsgruppe. Für einige Auswertungen musste die Auswertestrategie angepasst werden. Die davon betroffenen Abschnitte enthalten entsprechende Hinweise.

Hinweis: Die **Darstellung der Berechnungsschritte** ist **nicht zu** 100 % **identisch mit den Algorithmen**, wie sie **in den Programmen qs-STAT, procella und destra** implementiert sind. Die in unseren Programmen implementierten Algorithmen werden hier also <u>nicht</u> vorgestellt.

Alle hier vorgeführten Rechenschritte sollen dem Leser verstehen helfen, wie man von den Positionsmessergebnissen zu den einzelnen Kenngrößen der Prozessleistung und –fähigkeit gelangt. Dieses Verständnis ist notwendig, um die Aussage und Bedeutung der einzelnen Kenngrößen beurteilen und Entscheidungen für Einstellungen in der Auswertestrategie treffen zu können.

3.1 Einstellungsoptionen für die Berechnungsart (qs-STAT/destra)

Wir rufen die Ansicht der Auswertestrategie über das Menüband auf:

Start | Auswertestrategie

Es erscheint das Fenster "Auswertung", in der eine Flussbild-Grafik der Auswerteschritte enthalten ist. In der oberen linken Ecke der Flussbild-Grafik ist das weiße Rechteck mit der Beschriftung "Positionstoleranzen Po / Pok: MPo2" zu sehen.

Hinweis: Ist in der vom Leser verwendeten Auswertestrategie eine andere Berechnungsart eingestellt, so lautet die Beschriftung des Kästchens in der Regel auch anders als hier dargestellt.

Abbildung 3-1: Fenster Auswertung, in dem die Auswertestrategie als Flussbild enthalten ist

Wenn wir mit der Maus auf dieses Kästchen klicken, öffnet sich das Fenster "Anforderungen Positionstoleranzen".

In dem Fenster "Anforderungen Positionstoleranzen" klicken wir auf das Register "Berechnungsart".

Requirements Positional tolerances						
Type of the multivaria	te Characteristic	Positional tole	rance 🔻			
	-			-	1	
Calculation method	larget values	Requirements	Additional conditions	Requirements pre-run report		
Calculation met	hod					
 No calculation 				M61 extended limit	is AMM $\left[\hat{\sigma} = \sqrt{s^2} \right]$	
\bigcirc M1 ₁ $\hat{\sigma} = \sqrt{\sigma^2}$				M62 extended limit	s AMM [s/an]	
\bigcirc M1 ₂ $\hat{\sigma} = \bar{s} / a$	n			\bigcirc M63 extended limits AMM [\overline{R} / d $_n$]		
\bigcirc M1 ₃ $\hat{\sigma} = \overline{R} / d$	In			MPo2 max. probab	vility ellipse	
\bigcirc M1 ₄ $\hat{\sigma} = s_{tot}$				O MPo max. absolute	deviation	
M2 p percentage (Proportion outside specification)			ion)	MPo3 min. statistica	al distance	

Abbildung 3-2: Fenster "Anforderungen Positionstoleranzen" - Register "Berechnungsart"

In der Abbildung 3-2 ist der entsprechende Auszug aus der Strategie "Q-DAS Machine Capability (06/2013)" dargestellt. Diese Auswertestrategie ist die Standardeinstellung, sofern keine firmenspezifischen Anpassungen vorgenommen wurden (Stand: Frühjahr 2016). Die darin aktivierte Berechnungsart ist das Verfahren "MPo2 max. Wahrscheinlichkeitsellipse", welches dem Verfahren "Typ I" aus der Norm *ISO 22514-6:2013* entspricht.

3.2 Eindimensionale Auswertung des Abweichungsbetrags

Die zweidimensional, kreisförmig definierten Positionstoleranzen sollten wir stets zweidimensional auswerten, um das zweidimensionale Streuverhalten der Werte berücksichtigt zu haben. **Das hier zuerst beschriebene eindimensional arbeitende Auswertungsverfahren ist nicht zur Anwendung empfohlen**, da diese Art der Auswertung das zweidimensionale Streuverhalten der Positonsmessergebnisse verschleiert.

Um eine eindimensionale Auswertung für das übergeordnete Merkmale "Positional Deviations" zu aktivieren, erzeugen wir eine neue Auswertestrategie (Administrator-Rechte erforderlich!) und aktivieren darin eine der verfügbaren Berechnungsarten für eindimensionale Merkmale. In der folgenden Abbildung ist exemplarisch die Berechnungsart "M4₂ Percentil (0,135 %-50 % - 99,865 %)" ausgewählt worden, welche der Berechnungsmethode $M_{I=2, m=1}$ in der Norm ISO 22514-2:2013 entspricht.

Requirements Positional tolerances

Type of the multivariate Characteristic: Positional tolerance *	
Calculation method Target values Requirements Additional conditions Req	uirements pre-run report
Calculation method	
O No calculation	\bigcirc M6 ₁ extended limits AMM [$\hat{\sigma} = \sqrt{s^2}$]
\bigcirc M1 ₁ $\hat{\sigma} = \sqrt{\sigma^2}$	$\bigcirc~M6_2$ extended limits AMM [\overline{s} / a_n]
\bigcirc M1 ₂ $\hat{\sigma} = \bar{s} / a_n$	\bigcirc M6 ₃ extended limits AMM [\overline{R} / d _n]
\bigcirc M1 ₃ $\hat{\sigma} = \overline{R} / d_n$	O MPo2 max. probability ellipse
\bigcirc M1 ₄ $\hat{\sigma} = s_{101}$	O MPo max. absolute deviation
M2 p percentage (Proportion outside specification)	O MPo3 min. statistical distance
() M3₁ Range (x _{min} -x̄-x _{max})	
() M3₂ Range (x _{min} x̄·x _{max})	
○ M4 ₁ Percentile (0,135%-x̄-99,865%)	
M4 ₂ Percentile (0,135%-50%-99,865%)	

Abbildung 3-3: Einstellung für die eindimensionale Auswertung des Abweichungsbetrages (Aufruf des Fensters siehe Abschnitt 3.1 auf der Seite 21)

Mit dieser Methode erhalten wir für die Daten des Fallbeispiels die in Abbildung 3-5 dargestellten Auswertungsergebnisse.

Hinweis: Bitte beachten, dass für zweidimensional, kreisförmig definierte Positionstoleranzen die eindimensionale Auswertung das zweidimensionale Streuverhalten verschleiert.

An die Werte des Merkmals "Positional Deviation" aus dem Beispieldatensatz

"Positional_Deviation_Example.dfq", wurde vom Programm das Modell "Weibull-Verteilung" als best passendes Modell ausgewählt und angepasst. Weiter hat das Programm die beiden Streugrenzen des 99,73 % Zufallsstreubereiches dieser Verteilung bestimmt:

- untere Streugrenze = 0,135 %-Quantil $Q_{0,135\%}$ der Weibull-Verteilung
- obere Streugrenze = 99,865 %-Quantil $Q_{99,865\%}$ der Weibull-Verteilung

Die berechneten Werte dieser Quantile sind:

 $Q_{0,135\%} = -0,000\ 81\ mm$

 $Q_{99.865\%} = 0,23057 mm$

Im dem Histogramm (siehe: Abbildung 3-4) ist das 0,135 %-Quantil der Weibull-Verteilung als Linie Q_{un3} und das 99,865 %-Quantil der Weibull-Verteilung als Linie Q_{ob3} dargestellt.

Mit diesen Quantilswerten ermitteln wir die Prozessleistungsindizes wie folgt:

$$P_o = \frac{USL - LSL}{Q_{99,865\%} - Q_{0,135\%}} = \frac{(0,2-0)mm}{[0,23057 - (-0,00081)]} = \frac{0,2mm}{0,23138} \approx 0,86$$

$$P_{ok} = \frac{USL - Q_{50\%}}{Q_{99,865\%} - Q_{50\%}} = \frac{(0,2 - 0,07211)mm}{[0,23057 - 0,07211]} \approx 0.81$$

Hinweis: Die untere Spezifikationsgrenze USG ist eine natürliche Grenze und wird aus diesem Grund bei der P_{ok} -Berechnung ignoriert.

Das Histogramm der Positionsabweichungsbeträge erhalten wir durch das Aufrufen des Fensters "Histogramm - Einzelwerte" mit der Funktionstaste F4 oder mit dem Befehl Grafiken | Histogramm.

Abbildung 3-4:Grafik Histogramm für das Merkmal "Positional Deviation" mit dem daran angepassten Verteilungsmodell Weibull-Verteilung (Grafiken | Histogramm)

Das Ergebnisfenster "Formblatt – Darstellung 3" öffnen wir mit einem Druck auf die Funktionstaste F10. Alternativ können wir den Befehl Ergebnisse | Formblätter wählen.

Das folgende Ergebnis wurde mit dem Programm "qs-STAT" in dem Modul "Stichprobenanalyse" auf der Grundlage der Auswertestrategie "Po Pok univariat Absolut Value"³ erstellt, die im Programm nicht ausgewählt werden kann.

Part no.	Ex PD		Part descr. Positional Deviation Examp		ation Example	
Char.No.	P	D	Char.Descr.	Positional	Deviation	
Drawing	Values	Collected	d Values	Stati	stics	
Tm	0.100	x	0.0690	x	0.07680	
LSL*	0.000	x _{min}	0.008	s	0.0431	
USL	0.200	X _{max}	0.208	X _{50%}	0.07632	
T*	0.200	R	0.200	X _{0.135%}	-0.00081 [rt]	
Characteristics C :	unimportant	n _{eff}	50	X _{99.865%}	0.23057 [rt]	
		n tot	50	X _{up3} -X _{lo3}	0.23138 [rt]	
		N <t></t>	49 / 98.00000%	p <t></t>	99.32245 %	
		N >USL	1/2.00000%	p>usL	0.67755%	
		N <lsl< td=""><td></td><td>P<lsl< td=""><td></td></lsl<></td></lsl<>		P <lsl< td=""><td></td></lsl<>		
Model distribution Weibull distribution						
Distr.regress.coef	ff.	r,	at :	0.9955	9428	
Distr.regress.coef	ff.	Г25	5% :	0.9723	0551	
	Calculation method	1	M1 _{3,6} Perce	entile (0,135%-50%	-99,865%)	
Potential C	apability index	Po	0.69 ≤ 0.86 ≤ 1.03	0	1.67	
Critical ca	apability index	Pak	0.62 ≤ 0.81 ≤ 0.99	0	1.67	
The requirements were not met $(\underline{P}_{\underline{o}}, \underline{P}_{\underline{w}})$						
Demar	nd Potential Capab	ility index	Potarget	1.	67	
Dema	nd Critical capabi	ity index	Poktarget 1.67		67	
Po Pok univariat Absolut Value						

Abbildung 3-5: Fenster "Formblatt – Darstellung 3" mit dem Auswertungsergebnis gemäß der univariaten Auswertung M2,1 nach ISO 22514-2:2013 für den Beispieldatensatz "positional_deviation_example.dfq" (Aufruf mit der Funktionstaste F10)

³ Die Auswertestrategie "Po Pok univariat Absolut Deviation" wurde temporär für die Berechnungsdemonstration erzeugt und aufgrund ihrer geringen Bedeutung nicht in die Liste der im Programm verfügbaren Auswertestrategien aufgenommen.

3.3 Berechnungsart "MPo max. Abweichungsbetrag"

🕐 Requirements Positional tolerances							
Type of the multivariate Characteristic: Positional tolerance							
Calculation method Target values Require	nents Additional conditions	Requirements pre-run report					
Calculation method							
O No calculation		\bigcirc M6 ₁ extended limits AMM [$\hat{\sigma} = \sqrt{s^2}$]					
\bigcirc M1 ₁ $\hat{\sigma} = \sqrt{\sigma^2}$		\bigcirc M6 ₂ extended limits AMM [\overline{s} / a_n]					
\bigcirc M1 ₂ $\hat{\sigma} = \bar{s} / a_n$		\bigcirc M6 ₃ extended limits AMM [\overline{R} / d _n]					
\bigcirc M1 ₃ $\hat{\sigma} = \overline{R} / d_n$		O MPo2 max. probability ellipse					
\bigcirc M1 ₄ $\hat{\sigma} = s_{tot}$		MPo max. absolute deviation					
M2 p percentage (Proportion outside sp	ecification)	 MPo3 min. statistical distance 					

Abbildung 3-6: Fenster "Anforderungen Positionstoleranzen" mit der eingestellten Berechnungsart "MPo max. Abweichungsbetrag" (Aufruf dieses Einstellungsfensters siehe Abschnitt 3.1 auf der Seite 21)

Im ersten Schritt betrachten wir das *x*-*y*-Plot der Positionsmessergebnisse und suchen uns den Wert heraus, der den größten radialen Abstand $d_{euk.max}$ von der Soll-Position aufweist.

Abbildung 3-7: Darstellung der Positionsmessergebnisse im x-y-Plot mit Hervorhebung des Messergebnisses, das den größten radial gemessenen Abstand vom Sollwert aufweist

Formal entspricht der größte radiale Abstand dem größten Wert aller euklidischer Distanzen, berechnet aus den Ist- und Sollpositionen:

$$d_{i} = \sqrt{(x_{i} - x_{Soll})^{2} + (y_{i} - y_{Soll})^{2}}; i = 1, 2, ..., n$$
$$d_{euk.max} = \max(d_{1}, d_{2}, ..., d_{n})$$

mit

 x_i = x-Koordinate der Ist-Position ; y_i = y-Koordinate der Ist-Position

 $x_{Soll} = x$ -Koordiante der Soll-Position ; $y_{Soll} = y$ -Koordiante der Soll-Position

n = Anzahl der Werte

Der Wert mit der größten radialen Entfernung von der Sollposition hat die Ist-Position:

 $P_{Ist} = (x_{i=24} = 30,100 \text{ mm} | y_{i=24} = 19,972 \text{ mm})$

Wie wir aus der Abbildung 1-1 auf der Seite 3 entnehmen, lauten die Koordinaten für die Soll-Position:

 $P_{Soll} = (x_{Soll} = 30,000 \ mm \mid y_{Soll} = 20,000 \ mm)$

Mit diesen Informationen berechnen wir die maximale euklidische Distanz:

 $d_{euk.max} = \sqrt{(30,100 - 30,000)^2 mm^2 + (19,972 - 20,000)^2 mm^2} \approx 0,10385 mm$

Im zweiten Schritt teilen wir den Toleranzkreis-Radius (= $t_{PS}/2$) durch die euklidische Distanz. Das Ergebnis ist der *minimale Fähigkeitsindex* P_{ok} :

$$P_{OK} = \frac{\left(\frac{t_{ps}}{2}\right)}{d_{euk.max}} \approx \frac{0.1mm}{0.10385mm} \approx 0.96$$

Das folgende Ergebnis wurde mit dem Programm "qs-STAT" in dem Modul "Stichprobenanalyse" auf der Grundlage der Auswertestrategie "Po Pok univariat Position Absolut Deviation"⁴ erzeugt, welche im Programm nicht ausgewählt werden kann.

Part no.	Ex PD		Part descr.	descr. Positional Deviation Example		
Char.No.	P	D	Char.Descr.	Position	al Deviation	
Drawing '	Values	Collected	Collected Values		Statistics	
Tm	0.100	x	0.0690	x	0.07680	
LSL*	0.000	x _{min}	0.008	s	0.0431	
USL	0.200	X _{max}	0.208	X _{50%}	0.07632	
T*	0.200	R	0.200	X _{0.135%}	-0.00081 [rt]	
Characteristics C :	unimportant	Neff	50	X99.865%	0.23057 [rt]	
		n _{tot}	50	X _{up3} -X _{lo3}	0.23138 [rt]	
		N <t></t>	49 / 98.00000%	p _{<t></t>}	99.32245 %	
		N >USL	1/2.00000%	P >USL	0.67755%	
		N <lsl< td=""><td></td><td>P<lsl< td=""><td></td></lsl<></td></lsl<>		P <lsl< td=""><td></td></lsl<>		
Model distribution				Weibull	distribution	
Distr.regress.coeff	f.	Γ ₁	at	: 0.99	559428	
Distr.regress.coeff	f.	Г25	5%	: 0.97	230551	
c	Calculation method	1	MPor	max. absolute de	viation	
Potential Ca	apability index	Po	989	0	1.67	
Critical ca	pability index	Pak	0.96	0	1.67	
11	11 Capability indices were not calculated 11					
Deman	d Potential Capab	ility index	Po target		1.67	
Demar	nd Critical capabi	ity index	Pok target		1.67	
Po Pok univariat Position Absolut Deviation						

Abbildung 3-8: Fenster "Formblatt – Darstellung 3" mit dem Auswertungsergebnis nach der Berechnungsart "MPo max. Abweichungsbetrag" für den Beispieldatensatz "positional_deviation_example.dfq" (Aufruf mit der Funktionstaste F10)

Hinweis: Wir müssen bedenken, dass bei dieser Berechnungsart **sehr wenig an Informationen aus den Daten der Stichprobe genutzt** wird. Gerade mal ein einziger Extremwert (!) wird für die Fähigkeitsberechnung verwenden, weshalb wir vom Anwenden dieser Berechnungsart abraten.

⁴ Die Auswertestrategie "Po Pok univariat Position Absolut Deviation" wurde temporär für die Berechnungsdemonstration erzeugt und wurde aufgrund der geringen Bedeutung nicht in die Liste der im Programm verfügbaren Auswertestrategien aufgenommen.

3.4 Berechnungsart "MPo2 max. Wahrscheinlichkeitsellipse"

An die zweidimensional gemessenen Ist-Positionen passt das Programm eine zweidimensionale Normalverteilung an.

Abbildung 3-9: 50 Messergebisse der Ist-Positionen von Bohrungen mit dem daran angepassten Modell der zweidimensionalen Normalverteilung (hellblauer "Gitterberg)

In der Abbildung 3-9 sind die Messergebnisse von 50 Bohrloch-Positionen gemeinsam mit dem daran angepassten Modell der zweidimensionalen Normalverteilung ("Drahtgitter-Berg") dargestellt. Der rote Kreis repräsentiert die Toleranz der Positionsabweichung und hat den Durchmesser t_{PS} .

Im Falle der zweidimensionalen Normalverteilung ist der Streubereich der Merkmalswerte eine Streu-Ellipse. In der Abbildung 3-9 ist der 68,27 %- Zufallsstreubereich als blaue Ellipse zu erkennen. Deutung: Erwartungsgemäß liegen 683 von 1.000 Messwerten innerhalb der Umfangslinie der Streu- Ellipse.

3.4.1 Die zweidimensionale Normalverteilung

Die Wahrscheinlichkeitsdichtefunktion der zweidimensionalen Normalverteilung lautet allgemein:

$$g(x;y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}e^{\left\{-\frac{1}{2(1-\rho^2}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2\right]\right\}}$$

Der Mittelwert-Vektor der Stichprobe

$$\hat{\mu} = \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix}$$

repräsentiert den Schätzer für den Erwartungswert der zweidimensionalen Normalverteilung. Analog erhalten wir aus der Kovarianz-Matrix der Stichprobe den Schätzer für die Kovarianz-Matrix der Modellverteilung.

$$\boldsymbol{\hat{\Sigma}} = \begin{pmatrix} \hat{\sigma}_x^2 & \hat{\sigma}_{xy} \\ \hat{\sigma}_{xy} & \hat{\sigma}_y^2 \end{pmatrix} = \begin{pmatrix} s_x^2 & s_{xy} \\ s_{xy} & s_y^2 \end{pmatrix}$$

Für das Zeichnen der Konturen gleicher Wahrscheinlichkeitsdichte der 2D-Normalverteilung zu einer vorgegebenen Wahrscheinlichkeit $P = 1 - \alpha$ bestimmen wir zunächst die statistische Distanz gleicher Wahrscheinlichkeit $k_{1-\alpha}$ anhand der folgenden Beziehung:

$$k_{1-\alpha} = \sqrt{\chi^2_{2;1-\alpha}} = \sqrt{2ln\left(\frac{1}{\alpha}\right)}$$

Anschließend bestimmen wir die Längen der beiden Ellipsen-Halbachsen a und b wie folgt:

$$a = k \cdot \hat{\sigma}_{\iota}$$

$$b = k \cdot \hat{\sigma}_w$$

Mit

$$\hat{\sigma}_{v} = \sqrt{\frac{1}{2} \left(\hat{\sigma}_{x}^{2} + \hat{\sigma}_{y}^{2} \right) + \frac{1}{2} \sqrt{\left(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2} \right)^{2} + 4 \hat{\sigma}_{xy}^{2}}}$$
$$\hat{\sigma}_{w} = \sqrt{\frac{1}{2} \left(\hat{\sigma}_{x}^{2} + \hat{\sigma}_{y}^{2} \right) - \frac{1}{2} \sqrt{\left(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2} \right)^{2} + 4 \hat{\sigma}_{xy}^{2}}}$$

Für das Zeichnen wechseln wir von dem x-y-Koordinatensystem auf das v-w-Koordinatensystem.

Abbildung 3-10: Skizze zur Veranschaulichung der Streu-Ellipse mit dem Original-Bezugssystem (x-y-Koordinatensystem) und dem rotierten Bezugssystem (v-w-Koordinatensystem) der Streu-Ellipse

Den Rotationswinkel zwischen der *x*-Achse des alten und der *v*-Achse des neuen Koordinatensystems bestimmen wir wie folgt:

$$\beta_{v} = \frac{\arctan\left(\frac{2\hat{\sigma}_{xy}}{(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2})}\right)}{2}$$

Die Eigenwerte der Kovarianz-Matrix Σ repräsentieren die Varianz in Richtung der beiden Ellipsen-Hauptachsen (*v*-*w*-Koordinatensystem) und wir bestimmen sie mit:

$$\hat{\sigma}_{v}^{2} = \frac{1}{2} \left(\hat{\sigma}_{x}^{2} + \hat{\sigma}_{y}^{2} \right) + \frac{1}{2} \sqrt{\left(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2} \right)^{2} + 4 \hat{\sigma}_{xy}^{2}}$$
$$\hat{\sigma}_{w}^{2} = \frac{1}{2} \left(\hat{\sigma}_{x}^{2} + \hat{\sigma}_{y}^{2} \right) - \frac{1}{2} \sqrt{\left(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2} \right)^{2} + 4 \hat{\sigma}_{xy}^{2}}$$

3.4.1.1 Parameterschätzung zur 2D-NV für den Beispiel-Datensatz

Da innerhalb des Abschnittes 3.4 die Berechnungsergebnisse für die Daten des Fallbeispiels "positional_deviation_example.dfq" an mehreren Stellen wiederholt verwendet werden, fassen wir diese hier zusammen.

Erwartungswerte

$$\hat{\mu} = \begin{pmatrix} \hat{\mu}_x = \bar{x} \\ \hat{\mu}_y = \bar{y} \end{pmatrix} = \begin{pmatrix} 30,01376 \\ 20,01022 \end{pmatrix}$$

mit

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \approx 30,01376mm$$
; $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \approx 20,01022mm$

Kovarianz-Matrix

 $\hat{\Sigma} = \begin{pmatrix} \hat{\sigma}_x^2 & \hat{\sigma}_{xy} \\ \hat{\sigma}_{xy} & \hat{\sigma}_y^2 \end{pmatrix} = \begin{pmatrix} 0,00107888 & -0,000145191 \\ -0,000145191 & 0,000589889 \end{pmatrix}$

Mit der Varianz $\hat{\sigma}_x^2\,$, der Varianz $\hat{\sigma}_y^2$ und der Kovarianz $\hat{\sigma}_{xy}$

$$\hat{\sigma}_x^2 = s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 \approx 0,001\ 078\ 88\ mm^2$$
$$\hat{\sigma}_y^2 = s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 \approx 0,000\ 589\ 889\ mm^2$$
$$\hat{\sigma}_{xy} = s_{xy} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) \approx -0,000\ 145\ 191\ mm^2$$

Die Berechnung der **Eigenwerte der Kovarianz-Matrix** führt zu den Varianzen der 2D-Normalverteilung in Richtung der Achsen des rotierten *v*-*w*-Koordinatensystems:

$$\hat{\sigma}_{\nu}^{2} = \frac{1}{2} \left(\hat{\sigma}_{x}^{2} + \hat{\sigma}_{y}^{2} \right) + \frac{1}{2} \sqrt{\left(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2} \right)^{2} + 4 \hat{\sigma}_{xy}^{2}} \approx 0,001 \ 118 \ 741 \ mm^{2}$$
$$\hat{\sigma}_{w}^{2} = \frac{1}{2} \left(\hat{\sigma}_{x}^{2} + \hat{\sigma}_{y}^{2} \right) - \frac{1}{2} \sqrt{\left(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2} \right)^{2} + 4 \hat{\sigma}_{xy}^{2}} \approx 0,000 \ 550 \ 028 \ mm^{2}$$

Aus der Quadratwurzel dieser Eigenwerte erhalten wir die **Standardabweichungen**: $\hat{\sigma}_v \approx 0.033447582 \ mm^2$

 $\hat{\sigma}_w \approx 0,023\;452\;681\;mm^2$

Die Korrelation zwischen den Variablen *x* und *y*:

$$\hat{\varrho} = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x \hat{\sigma}_y} \approx -0,181\ 999$$

Der **Rotationswinkel** β_v zwischen der *x*-Achse des ursprünglichen *x-y*-Koordinatensystems und der *v*-Achse des neuen *v*-*w*-Koordinatensystems ist:

$$\beta_{v} = \frac{\arctan\left(\frac{2\hat{\sigma}_{xy}}{\left(\hat{\sigma}_{x}^{2} - \hat{\sigma}_{y}^{2}\right)}\right)}{2} \approx -0,267\ 938\ 574\ rad$$

Durch das Multiplizieren mit $\frac{180}{\pi}$ bestimmen wir die Winkel in der Einheit Grad:

 $\beta_{\mathcal{V}} \approx -15,35^{\circ}$

3.4.2 Bestimmung der Kenngröße Po nach DIN ISO 22514-6

Mit dem Kennwert P_o beurteilen wir, ob die Streuung der-Positionsmesswerte grundsätzlich klein genug ist. Der wesentliche Unterschied bei der Bestimmung des Kennwertes P_o im Vergleich zu P_{ok} ist die Tatsache, dass die tatsächliche Mittelwertlage ignoriert wird: gedanklich verschieben wir die Prozessverteilung mit ihrem Mittelwert exakt auf die Soll-Position. Anhand der Kenngröße P_o stellen wir fest, ob die nun um den Sollwert streuenden Positionen *grundsätzlich* "sicher" innerhalb des Toleranzkreises mit dem Durchmesser t_{ps} erzeugt werden können.

Quelle des Verfahrens: Das hier beschriebene Verfahren entspricht dem **Typ I** gemäß **ISO 22514-6**: **2013-02**, welches in der **Software** als "**MPo2 max. Wahrscheinlichkeitsellipse**" bezeichnet ist.

Das Vorgehen betrachten wir hier in Schrittfolgen.

Schritt 1 – Verschieben der Normalverteilung: Wir verschieben die zweidimensionale Normalverteilung von der aktuellen Mittelwert-Lage auf den Sollwert. Die Verschiebung ist in der Abbildung 3-11 durch einen kleinen roten Pfeil verdeutlicht.

Abbildung 3-11: Darstellung der Po-Ellipse für die Positionsmesswerte des Fallbeispiels

Aufgrund dieser Verschiebung befindet sich die Prozessverteilung nun in der "Ideal-Position": Exakt zentriert auf dem Sollwert.

Schritt 2 – Bestimmen der Wahrscheinlichkeit a: Gesucht ist in diesem Schritt die Wahrscheinlichkeit α unterhalb der 2D-Normalverteilung, die sich **außerhalb** der in der Abbildung 3-12 dargestellten P_o -Ellipse befindet:

Abbildung 3-12: Darstellung der den Toleranzkreis gerade berührenden Streu-Ellipse und des Vektors d_{Po} , der auf den Berührungspunkt zeigt

Zunächst bestimmen wir die minimale statistische Distanz⁵ zwischen der Soll-Position und dem Toleranzkreis-Berührungspunkt:

$$k_{Po} = \sqrt{\left(\frac{v_{Po}}{\sigma_v}\right)^2 + \left(\frac{w_{Po}}{\sigma_w}\right)^2}$$

In der Abbildung 3-12 ist in grüner Farbe der Vektor \vec{d}_{Po} dargestellt. Dieser Vektor hat die Koordinaten $v_{Po} = \frac{t_{PS}}{2}$ und $w_{Po} = 0$. Für diese Koordinaten ergibt sich die kleinste statistische Distanz zum Toleranzkreis.

⁵ Was wir hier als "statistische Distanz" bezeichnen, wird in der Literatur oft auch als "Mahalanobis-Distanz" bezeichnet.

Mit den Daten aus dem Beispiel erhalten wir damit das folgende Ergebnis für die minimale statistische Distanz:

$$k_{Po} = \sqrt{\left(\frac{v_{Po}}{\sigma_v}\right)^2 + \left(\frac{w_{Po}}{\sigma_w}\right)^2} \approx \sqrt{\left(\frac{0.1 \ mm}{0.033 \ 447 \ 583 \ mm}\right)^2 + 0} \approx \frac{0.1 \ mm}{0.033 \ 447 \ 583 \ mm} \approx 2,989 \ 753$$

Mit

$$\begin{aligned} v_{Po} &= \frac{t_{PS}}{2} = \frac{0.2 \ mm}{2} = 0.1 \ mm \\ \hat{\sigma}_v &= \sqrt{\frac{1}{2} \left(\hat{\sigma}_x^2 + \hat{\sigma}_y^2 \right) + \frac{1}{2} \sqrt{\left(\hat{\sigma}_x^2 - \hat{\sigma}_y^2 \right)^2 + 4 \hat{\sigma}_{xy}^2}} \approx 0.033 \ 447 \ 6 \ mm \\ \hat{\sigma}_x^2 &= s_x^2 = \left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 \right] mm^2 \approx 0.001 \ 078 \ 88 \ mm^2 \\ \hat{\sigma}_y^2 &= s_y^2 = \left[\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 \right] mm^2 \approx 0.000 \ 589 \ 889 \ mm^2 \\ \hat{\sigma}_{xy} &= s_{xy} = \left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) \right] mm^2 \approx -0.000 \ 145 \ 191 \ mm^2 \end{aligned}$$

Schließlich berechnen wir das Wahrscheinlichkeitsvolumen α der 2D-Normalverteilung, welches sich

außerhalb der Po-Ellipse befindet.

$$\alpha = e^{-\left(\frac{1}{2}k_{Po}^2\right)} \approx 0,011\ 455\ 21$$

Hinweis: Wir müssen beachten, dass die hier berechnete Wahrscheinlichkeit α den Anteil außerhalb der P_o -Ellipse beschreibt und <u>nicht</u> den zu erwartenden Überschreitungsanteil außerhalb des Toleranzkreises bei exakter Prozess-Zentrierung. Aus diesem Grund können wir die Wahrscheinlichkeit α <u>nicht</u> dafür nutzen, den zu erwarteten Anteil an nicht konformen Einheiten bei exakter Prozess-Zentrierung abzuschätzen

Schritt 3 – Bestimmen der Wahrscheinlichkeit Ppo:

Nun erfolgt eine "Umdeutung" des Wahrscheinlichkeitsvolumens α :

Abbildung 3-13: Veranschaulichung, wie das Wahrscheinlichkeitsvolumens α der zweidimensionalen Normalverteilung als zweiseitiger Überschreitungsanteil einer eindimensionalen Standardnormalverteilung umgedeutet wird

Wir denken uns das Wahrscheinlichkeitsvolumen α unterhalb der zweidimensionalen Normalverteilung als einen zweiseitig aufgeteilten Überschreitungsanteil einer eindimensionalen Standardnormalverteilung (siehe Abbildung 3-13).

In der Abbildung 3-14 ist die Wahrscheinlichkeit $\alpha/2$ in roter Farbe und die Komplementärwahrscheinlichkeit $P_{Po} = 1 - \frac{\alpha}{2}$ in blassblauer Farbe dargestellt.

Abbildung 3-14: Standardnormalverteilung mit der Wahrscheinlichkeit PPo und dem zugehörigen Quantil zPpo

Der Wert der gesuchten Wahrscheinlichkeit P_{po} ist

$$P_{Po} = 1 - \frac{\alpha}{2} \approx 0,994\ 272\ 4$$

Schritt 4 – Bestimmen des Quantils der eindimensionalen Standardnormalverteilung:

Wir berechnen mit der inversen Verteilungsfunktion (Quantil-Funktion) der eindimensionalen Standardnormalverteilung das Quantil zur *Wahrscheinlichkeit P_{Po}*.

$$z_{P_{PO}} = G^{-1}(P_{Po} = 0.994\ 272\ 4) \approx 2.528\ 497$$

mit

 G^{-1} = inverse Verteilungsfunktion der eindimensionalen Standardnormalverteilung

Schritt 5 – Berechnung der Fähigkeitskenngröße P_o:

Zur Bestimmung dieser Kenngröße teilen wir das im Schritt 4 berechnete Quantil durch drei.

$$P_O = \frac{z_{P_{PO}}}{3} \approx \frac{2,528\,497}{3} \approx 0,84$$

Die Anforderung gilt als erfüllt, wenn der berechnete P_o -Wert größer oder gleich dem vorgegebenen Mindestwert $P_{o_{min}}$ ist:

 $P_o \ge P_{o_{min}}$

3.4.3 Bestimmung der Kenngröße *P*_{ok} nach DIN ISO 22514-6

Mit der Kenngröße P_{ok} beurteilen wir, ob die Streuung der (Modell-) Verteilung der Positionsmessungen unter Berücksichtigung der tatsächlichen Mittelwert-Lage klein genug ist, um die Positionen "sicher" innerhalb des Toleranzkreises herstellen zu können.

Quelle des Verfahrens: Das hier beschriebene Verfahren entspricht dem **Typ I** gemäß **ISO 22514-6**: **2013-02**. Dieses Verfahren ist in der **Software** als "**MPo2 max. Wahrscheinlichkeitsellipse**" bezeichnet.

Im Vergleich zum Abschnitt 3.4.2 ist nur der **erste Schritt** identisch, in dem das Bestimmen der **Parameter-Schätzer** für die zweidimensionale Normalverteilung erfolgt.

Schritt 2 – Bestimmen der Wahrscheinlichkeit *α* für die den Toleranzkreis berührende Streu-Ellipse: Anhand der Abbildung 3-15 erkennen wir, dass die Normalverteilung (und damit die Ellipse) nicht auf der Soll-Position befindlich ist. Es wird die tatsächliche Mittelwertlage verwendet und damit berücksichtigt.

Abbildung 3-15: Darstellung der Pok--Ellipse mit den Strecken vPok und wPok

Gesucht ist das Wahrscheinlichkeitsvolumen α^* der zweidimensionalen Normalverteilung, das sich außerhalb der den Toleranzkreis berührenden Streu-Ellipse (siehe Abbildung 3-15) befindet.

Dazu ist zunächst die minimale statistische Distanz⁶ k_{Pok} zwischen dem Ellipsen-Mittelpunkt und dem Toleranzkreis zu ermitteln:

$$k_{Pok} = \sqrt{\left(\frac{v_{Pok}}{\hat{\sigma}_v}\right)^2 + \left(\frac{w_{Pok}}{\hat{\sigma}_w}\right)^2}$$

In der Abbildung 3-15 ist in grüner Farbe der Vektor \vec{d}_{Pok} dargestellt. Mit den Koordinaten v_{Pok} und w_{Pok} dieses Vektors ergibt sich die minimale statistische Distanz zum Toleranzkreis. Das Verfahren zur Bestimmung der minimalen statistischen Distanz ist komplexer, weshalb wir die Darstellung in den Anhang verschoben haben und an dieser Stelle auf die Details der Ermittlung verzichten. Für die Daten des Fallbeispiels erhalten wir die minimale statistische Distanz

 $k_{Pok} \approx 2,625\ 029$

⁶ Was wir hier als "statistische Distanz" bezeichnen, wird oft als "Mahalanobis-Distanz" bezeichnet.

Mit der minimalen statistischen Distanz k_{Pok} berechnen wir das Wahrscheinlichkeitsvolumen α^* , welches sich außerhalb der P_{ok} -Ellipse befindet:

$$\alpha^* = e^{-\left(\frac{1}{2}k_{Po}^2\right)} \approx e^{-\left(\frac{1}{2}2,625\,029^2\right)} \approx 0,031\,892$$

Hinweis: Wieder ist zu beachten, dass die berechnete Wahrscheinlichkeit den zu erwartenden Anteil außerhalb der P_{ok} -Ellipse beschreibt. Diese Wahrscheinlichkeit ist also <u>nicht</u> der zu erwartenden Überschreitungsanteil außerhalb des Toleranzkreises. Aus diesem Grund können wir die Wahrscheinlichkeit α^* <u>nicht</u> dafür nutzen, den erwarteten Anteil an nicht konformen Einheiten abzuschätzen.

Schritt 3 – Bestimmen der Wahrscheinlichkeit P_{Pok}

Wieder erfolgt das "Umdeuten" der Wahrscheinlichkeit α * als zweiseitig aufgeteilter Überschreitungsanteil einer eindimensionalen Standardnormalverteilung, ganz analog der Beschreibung zu den Schritten drei und vier im Abschnitt 3.4.2. Die gesuchte Wahrscheinlichkeit bestimmen wir wie folgt:

$$P_{Pok} = 1 - \frac{\alpha^*}{2} \approx 0,984\ 054$$

Schritt 4 – Bestimmen des Quantils Z_{Ppak}

Mit der inversen Verteilungsfunktion der eindimensionalen Standardnormalverteilung (Quantil-Funktion) berechnen wir das Quantil $z_{P_{Pak}}$:

$$z_{P_{Pok}} = G^{-1}(P_{Pok}) \approx 2,145\ 757$$

Schritt 5 – Berechnen des minimalen Fähigkeitsindexes Pok

Den minimalen Fähigkeitsindex *P*_{ok} erhalten wir, indem wir das Quantil *z*_{*P*_{pok}} durch den Wert 3 teilen:

$$P_{ok} = \frac{z_{P_{Pok}}}{3} \approx 0.715\ 252 \approx 0.72$$

Die Anforderung gilt als erfüllt, wenn der minimale Fähigkeitsindex größer oder mindestens gleich dem vorgegebenen Mindestwert ist:

 $P_{ok} \ge P_{ok_{min}}$

Das folgende Ergebnis wurde mit dem Programm qs-STAT in dem Modul "Stichprobenanalyse" auf der Grundlage der Auswertestrategie "Q-DAS Machine Capability (06/2013)" erstellt:

Part no.	Ex PD		Part descr.	Positional Dev	viation Example	
Char.No.	P	D	Char.Descr.	Positional Deviation		
Drawi	ng Values	Collecter	d Values	Statistics		
Tm	0.100	x	0.0690	x	0.07680	
LSL*	0.000	×min	0.008	s	0.0431	
USL	0.200	X _{max}	0.208	X _{50%}	0.07632	
T*	0.200	R	0.200	X _{0.135%}	-0.00081 [rt]	
Characteristics	C: unimportant	Neff	50	X99.865%	0.23057 [rt]	
		n _{tot}	50	X _{up3} -X _{lo3}	0.23138 [rt]	
		N <t></t>	49 / 98.00000%	p <t></t>	99.32245 %	
		N >USL	1/2.00000%	P>USL	0.67755%	
		N <lsl< td=""><td></td><td>P<lsl< td=""><td></td></lsl<></td></lsl<>		P <lsl< td=""><td></td></lsl<>		
Model distribution Weibull distribution						
Distr.regress.coeff. r _{tot} :			0.99559428			
Distr.regress.co	oeff.	Г2:	5% :	0.972	30551	
	Calculation method	1	MPo2	max. probability e	ellipse	
Potentia	l Capability index	Po	0.68 ≤ 0.84 ≤ 1.01	0	1.67	
Critical	capability index	P _{ak}	0.55 ≤ 0.72 ≤ 0.88	0	1.67	
The requirements were not met $(\underline{P}_{\underline{o}}, \underline{P}_{\underline{ok}})$						
Dem	nand Potential Capab	ility index	Potarget	1	.67	
Der	mand Critical capabi	lity index	Pok target	1	.67	
	6	Q-DAS Machine	Capability (06/2013)		

Abbildung 3-16: Fenster "Formblatt – Darstellung 3" mit dem Berechnungsergebnis nach der Berechnungsmethode "MPo2 max. Wahrscheinlichkeitsellipse" für den Beispieldatensatz "positional_deviation_example.dfq" (Aufruf mit der Funktionstaste F10)

3.5 Berechnungsart "MPo3 max. Probability Ellipse / Line"

Dieses Verfahren ist grob verwandt mit der Berechnungsart "MPo2 max. Wahrscheinlichkeitsellipse", vermeidet aber dessen numerischen Nachteile. Das heißt, wir umgehen hier das Bestimmen des Wahrscheinlichkeitsvolumens unterhalb der 2D-Normalverteilung und auch das sich daran anschließende Bestimmen der inversen Verteilungsfunktion (Quantil) der eindimensionalen Standardnormalverteilung.

3.5.1 Bestimmen der Kenngröße Po

Im **ersten Schritt** Schätzen wir alle Kenngrößen gemäß dem Abschnitt 3.4.1. Auch bei diesem Verfahren benötigen wir die minimale statistische Distanz k_{Po} zwischen dem Ellipsen-Mittelpunkt und dem Toleranzkreis. Der **Ellipsen-Mittelpunkt** ist hier **verschoben auf die Soll-Position**.

Abbildung 3-17: Darstellung der den Toleranzkreis berührenden Streu-Ellipse mit dem auf den Berührungspunkt weisenden Vektor \vec{d}_{Po} , dessen Vektorkoordinaten $v_{Po} = \frac{t_{PS}}{2}$ und $w_{Po} = 0$ sind.

In der Abbildung 3-17 ist der auf den Berührpunkt weisende Vektor \vec{d}_{Po} dargestellt. Dieser Vektor hat die Koordinaten $v_{Po} = \frac{t_{PS}}{2} = 0.1mm$ und $w_{Po} = 0$. Mit diesen Koordinaten bestimmen wir die minimale statistische Distanz k_{Po} :

$$k_{Po} = \sqrt{\left(\frac{v_{Po}}{\hat{\sigma}_v}\right)^2 + \left(\frac{w_{Po}}{\hat{\sigma}_w}\right)^2} \approx \sqrt{\left(\frac{0.1 \ mm}{0.033 \ 447 \ 583 \ mm}\right)^2 + 0} \approx \frac{0.1 \ mm}{0.033 \ 447 \ 583 \ mm} \approx 2,989 \ 753$$

Nun teilen wir die minimale statistische Distanz k_{Po} durch drei und erhalten den Leistungsindex P_o :

$$P_0 = \frac{k_{P_0}}{3} \approx \frac{2,989\,753}{3} \approx 0,996\,584 \approx 1,00$$

3.5.2 Bestimmen der Kenngröße Pok

Für das Bestimmen der Kenngröße *P*_{ok} benötigen wir die minimale statistische Distanz zwischen dem Ellipsen-Mittelpunkt und dem Toleranzkreis-Berührungspunkt. Der **Ellipsen-Mittelpunkt** ist **nicht verschoben** und entspricht dem Mittelwert der Beobachtungsdaten. In der Abbildung 3-18 ist die Streu-Ellipse dargestellt, die den Toleranzkreis gerade berührt.

Abbildung 3-18: Veranschaulichung des auf den Berührungspunkt weisenden Vektors d_{Pok} mit den Vektorkoordinaten v_{Pok} und w_{Pok}

Der Vektor d_{Pok} zeigt auf den Berührungspunkt und hat die Vektor-Koordinaten w_{Pok} und v_{Pok} . Mit diesen Vektor-Koordinaten berechnen wir die minimale statistische Distanz k_{Pok} :

$$k_{Pok} = \sqrt{\left(\frac{v_{Pok}}{\sigma_v}\right)^2 + \left(\frac{w_{Pok}}{\sigma_w}\right)^2} \approx 2,625\ 029$$

Die Details zur Bestimmung der minimalen statistischen Distanz ist aufgrund der größeren Komplexität in den Anhang verschoben.

Dividieren wir die minimale statistische Distanz k_{Pok} durch den Wert 3, so erhalten wir den **minimalen** Leistungsindex P_{ok} :

$$P_{ok} = \frac{k_{Pok}}{3} \approx \frac{2,625\ 029}{3} \approx 0,875\ 010 \approx 0,88$$

HEXAGON

Das folgende Auswerteungsergebnis wurde mit dem Programm "qs-STAT" in dem Modul "Stichprobenanalyse" auf der Grundlage der Auswertestrategie "Q-DAS Machine Capability (01/2020)" erstellt.

Part no.	Ex PD		Part descr.	Positional Devi	ation Example	
Char.No.	P	D	Char.Descr.	Positional	Deviation	
Drawing	y Values	Collecter	d Values	Statistics		
Tm	0.100	x	0.0690	x	0.07680	
LSL*	0.000	x _{min}	0.008	s	0.0431	
USL	0.200	X _{max}	0.208	X 50%	0.07126	
T*	0.200	R	0.200	X _{0.135%}	0.00258	
Characteristics C	: unimportant	Neff	50	X _{99.865%}	0.23648	
		n tot	50	X _{up3} -X _{lo3}	0.23391	
		N <t></t>	49 / 98.00000%	p <t></t>	99.19524 %	
		N >USL	1/2.00000%	p >usL	0.80476%	
		n <lsl< td=""><td></td><td>P<lsl< td=""><td></td></lsl<></td></lsl<>		P <lsl< td=""><td></td></lsl<>		
Model distribution		•		Weibull dis	tribution	
Distr.regress.coe	ff.	r,	lat :	0.9961	8009	
Distr.regress.coe	ff.	Г2	5% :	0.9695	1722	
	Calculation method	1][MPo3	min. statistical dis	tance	
Potential C	Capability index	Po	0.82 ≤ 1.00 ≤ 1.28	0	1.67	
Critical c	apability index	Pak	0.72 ≤ 0.88 ≤ 1.13	0	1.67	
The requirements were not met $(\underline{P}_{0}, \underline{P}_{ok}, \underline{LV})$						
Dema	nd Potential Capab	ility index	Potarget	1.0	67	
Dema	and Critical capabi	ity index	Pok target	1.0	67	
	e	Q-DAS Machine	Capability (01/2020)		

Abbildung 3-19: Fenster "Formblatt – Darstellung 3" mit dem Ergebnis der Fähigkeitsberechnung nach der Berechnungsart "Q-DAS Machine Capability (01/2020)" für den Datensatz "Postional_Deviation_Example.dfq" (Aufruf mit der Funktionstaste F10)

3.6 Methode MPo A1 [AFNOR E60-181]

Diese Methode ist **nur** in dem **Modul Prozessanalyse** verfügbar und ist in der französischen Norm AFNOR E 60-181: 01-2001, Abschnitt 4.7.8, beschrieben.

🕙 Anforderungen Positionstoleranzen								
Berechnungsart Sollwerte Anforderungen Zusatzbedingungen								
Berechnungsart								
keine Bere	🔘 keine Berechnung							
MPo2 max	. Wahrsche	inlichkeitsellipse						
MPo max.	MPo max. Abweichungsbetrag							
MPo A1 [AFNOR E60-181]								
MPo3 Max	Probability	Ellipse/Line						

Abbildung 3-20: Berechnungsart MPo A1 [AFNOR E60-181] in dem Modul Prozessanalyse

Die Fähigkeitsberechnung erfolgt auf Basis der Abweichungsbeträge zum Mittelwert. Das heißt, wir bestimmen im ersten Schritt die euklidischen Distanzen zum Mittelwert:

$$r_i = \sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}; i = 1, 2, ..., n$$

Im zweiten Schritt berechnen wir für die Abweichungsbeträge den Mittelwert und die Standardabweichung:

$$\bar{r} = \frac{1}{n} \sum_{i=1}^{n} r_i$$

$$s_p = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (r_i - \bar{r})^2}$$

Im dritten Schritt berechnen wir den Leistungsindex Cap:

$$Cap = \frac{TG}{D_p}$$

mit

$$TG = \frac{t_{PS}}{2}$$
$$D_p = 5.55 \cdot s_p$$

Im vierten und letzten Schritt berechnen wir den minimalen Leistungsindex Cpk:

$$C_{pk} = \frac{(TG - \bar{r})}{D_p}$$

Für die Daten aus dem Beispieldatensatz "positional_deviation_example.dfq" erhalten wir:

$$Cap = \frac{TG}{D_p} = \frac{0.1 \ mm}{0.105 \ 464 \ 887 \ mm} \approx 0.948$$
$$C_{pk} = \frac{(TG - \bar{r})}{D_p} = \frac{(0.1 - 0.035 \ 798 \ 242)mm}{0.105 \ 464 \ 887 \ mm} \approx 0.609$$

mit

 $\bar{r} = 0,035~798~242~mm$

- $s_p = 0,019\ 002\ 682\ mm$
- $D_p = 5.55 \cdot s_p = 0,105 \ 464 \ 887 \ mm$

$$TG = \frac{t_{PS}}{2} = \frac{0.2 \ mm}{2} = 0.1 \ mm$$

Das folgende Ergebnis wurde mit dem Programm qs-STAT in dem Modul "Prozessanalyse" auf der Grundlage der Auswertestrategie "AFNOR E 60-181" erstellt.

Part no. Ex	(PD	D Part descr.		Positional Deviation Example		
Char.No.	PD	Char.Descr.	Posit	tional Deviation		
Drawing Values	Collecte	ed Values		Statistics		
T _m 0.100	x	0.0690	x	0.07680		
LSL* 0.000	Xmin	0.008	s	0.0431		
USL 0.200	Xmax	0.208	X _{50%}	0.07680		
T* 0.200	R	0.200	X _{0.135%}	-0.05242		
Characteristics C: unimportant	n _{eff}	50	X99.865%	0.20602		
	n tot	50	6s	0.25844		
	N <t></t>	49 / 98.00000%	p <t></t>	99.78832 %		
	N >USL	1/2.00000%	p>usL	0.21168%		
	N <lsl< td=""><td></td><td>p<lsl< td=""><td></td></lsl<></td></lsl<>		p <lsl< td=""><td></td></lsl<>			
Model distribution Normal Distribution						
Distr.regress.coeff.	I	Ftat	: 0	.98721731		
Distr.regress.coeff.	r	25%	: 0	.97277545		
Calculation metho	d	MPo	A1 [AFNOR I	E60-181]		
Potential Capability index	CAP	0.95	0	1.66		
Critical capability index	СРК	0.61	0	1.66		
The requirements were not met (CAP, CPK, Poi)						
Demand Potential Capa	bility index	CAP target		1.66		
Demand Critical capab	ility index	CPK target		1.66		
	AFNO	R E 60-181				

Abbildung 3-21: Fenster "Formblatt – Darstellung 3" mit dem Auswertungsergebnis nach der Methode MPo A1 [AFNOR E60-181] für den Beispieldatensatz "positional_deviation_example.dfq" (Aufruf mit der Funktionstaste F10)

4 Anhang

4.1 Ermitteln der statistischen Distanz für die Pok-Ellipse

Wir betrachten hier die Details zu dem zweiten Schritt aus der Pok-Berechnung, bei dem die minimale statistische Distanz k zwischen dem Mittelwert der Positionsmessergebnisse M und dem Toleranzkreis zu bestimmen ist.

Wir müssen genau den Punkt auf der Umfangslinie des Kreises finden, der die *kleinste statistische* Entfernung zu dem Punkt M aufweist. Was uns das Leben bei dieser Suche erschwert, ist die Tatsache, dass die Lage des v-w-Koordinatensystems gegenüber dem x-y-Koordinatensystem verschoben und verdreht ist.

Abbildung 4-1: Das original x-y-Koordinatensystem wird so gedreht, dass es zu dem v-w-Koordinatensystem im gleichen Winkel ausgerichtet ist.

4.1.1 Drehung des Koordinatensystems

Damit wir es bei unseren Berechnungen leichter haben, drehen wir zunächst das original *x-y*-Koordinatensystem so, dass es exakt ausgerichtet ist zu dem *v-w*-Koordinatensystem der Streu- Ellipse. Das dadurch entstehende neue Koordinatensystem bezeichnen wir hier als *n-m*-Koordinatensystem. Durch diese Drehung ergeben sich in dem neuen *n-m*-Koordinatensystem andere Koordinatenwerte für den Mittelwert *M* als in dem alten *x-y*-Koordinatensystem. Die nächsten drei Abschnitte zeigen die Ermittlung dieser neuen *n*- und *m*-Koordinatenwerte für den Punkt *M*.

4.1.2 Bestimmen des Vektors von der Sollpositon zur Mittelwert-Position M

Abbildung 4-2: Vektor l in dem original x-y-Koordinatensystem

Schon bekannt sind uns die Koordinaten des Punktes M von unserem Mittelwert (Abschnitt 3.4.1) in dem originalen x-y-Koordinatensystem.

 $x_M = 30.013~76~mm$

 $y_M = 20,010\ 22\ mm$

und die Sollpositon (Abschnitt 1.1):

 $x_{Soll} = 30,000\,mm$

$$y_{Soll} = 20,000 \, mm$$

Mit diesen Informationen berechnen wir den Betrag $|\vec{l}|$ und den Winkel α des Vektors \vec{l}

$$\begin{aligned} |\vec{l}| &= \sqrt{(x_M - x_{Soll})^2 + (y - y_{Soll})^2} \\ |\vec{l}| &= \sqrt{(30,013\ 76\ mm - 30,000\ 00\ mm)^2 + (20,010\ 22mm - 20,000\ 00\ mm)^2} \\ |\vec{l}| &= \sqrt{0,013\ 76^2mm^2 + 0,010\ 22^2mm^2} = 0,017\ 140\ 187\ mm \\ \alpha &= \arctan\frac{(x_M - x_{Soll})}{(y_M - y_{Soll})} \\ \alpha &= \arctan\frac{(30,013\ 76\ mm - 30,000\ 00\ mm)}{(20,010\ 22\ mm - 20,000\ 00\ mm)} = 0,638\ 833\ 7\ rad \end{aligned}$$

4.1.3 Bestimmen des Winkels δ des Vektors \vec{l} im *n*-*m*-Koordinatensystem

In der Abbildung 4-3 ist der Winkel δ des Vektors \vec{l} dargstellt Dieser Winkel definiert die Lage des Vektors \vec{l} in dem neuen *n*-*m*-Koordinatensystem. Nun ermitteln wir den Wert dieses Winkels:

Abbildung 4-3: Darstellung des Winkels δ des Vektors \vec{l} in dem n-m-Koordinatensystem

Aus vorherigen Berechnungen ist bekannt:

 $\alpha = 0,638\ 833\ 7\ rad$

 $\beta = -0,267\,938\,574\,rad$

Mit diesen Werten berechnen wir den Winkel δ unter Berücksichtigung der mathematischen Drehrichtung (entgegen dem Uhrzeigersinn).

Winkel des Vektors *l* im *m*-*n*-Koordinatensystem: $\delta = \alpha - \beta$

 $\delta = 0,638\,833\,7\,rad - (-0,267\,938\,574\,rad) = 0,906\,772\,27\,rad$

4.1.4 Koordinaten des Vektors \vec{l} im *n*-*m*-Koordinatensystem

Nun bestimmen wir die Koordinaten n_M und m_M für unseren Mittelwert (Punkt *M*) in dem neuen n-m-Koordinatensystem.

Abbildung 4-4: Veranschaulichung der Koordinaten m_M und n_M

Hinweis: Zur Vereinfachung der Berechnungen wurde die Soll-Position im m-n-Koordinatensystem einfach zu Null gesetzt. Die Sollposition ist als Punkt (0 | 0) in der Abbildung 4-4 dargestellt.

Bekannt aus vorherigen Berechnungen:

Betrag des Vektors \vec{l}	$ \vec{l} = 0,017\ 140\ 187\ mm$	
Winkel des Vektors \vec{l}	$\delta = 0,90677227rad$	

Koordinate des Vektors \vec{l} in Richtung der *m*-Achse:

- $m_M = \left| \vec{l} \right| \cdot \cos \delta$
- $m_M = 0,017\ 140\ 187\ mm \cdot \cos(0,906\ 772\ 27\ rad)$
- $m_M = 0,010\ 563\ 34\ mm$

Koordinate des Vektors l in Richtung der n-Achse:

 $n_M = \left| \vec{l} \right| \cdot \sin \delta$

 $n_M = 0,017\ 140\ 187\ mm \cdot sin(0,906\ 772\ 27\ rad)$

 $n_M = 0,013\;498\;22\;mm$

4.1.5 Bestimmen der statistischen Distanz *k* vom Mittelwert *M* zum Toleranzkreis

Nun betrachten wir das Bestimmen der statistischen Distanz k zwischen der Mittelwert-Position M und einem beliebigen Punkt P auf der Umfangslinie des Toleranzkreises.

Für das Bestimmen eines beliebigen Punktes *P* auf der Umfangslinie des Toleranzkreises benötigen wir die Kreisgleichung:

 $r^2 = m_p^2 + n_p^2$

 $r = \frac{t_{PS}}{2} = \frac{0.2 \ mm}{2} = 0.1 \ mm$

Um die Koordinaten für einen beliebigen Punkt *P* auf der Umfangslinie des Toleranzkreises zu erhalten, wählen wir zunächst einen Wert für die Variable m_P (im Intervall $-r \le m_p \le r$).

Anschließend bestimmen wir den zugehörigen Wert der Variablen n_P anhand der Kreisformel:

$$n_p = \pm \sqrt{r^2 - m_p^2}$$

Mit Blick auf die Abbildung 4-5 sehen wir, dass die kleinste statistische Distanz für dieses Fallbeispiel im ersten Quadranten des m-n-Koordinatensystems zu suchen ist (Als Zeigerposition einer Uhr gedacht also im Bereich zwischen 12:00 Uhr und 03:00 Uhr):

Abbildung 4-5: Darstellung des Verktors von dem Punkt M zu dem Punkt P mit allen zugehörigen Vektorkomponenten

Weiter erkennen wir anhand der Abbildung 4-5, dass die statistische Distanz für den Abstand zwischen dem Mittelwert M und dem Punkt P mit den Vektorkomponenten v_p und w_p im v-w-Koordinatensystem der Streu-Ellipse berechnet werden muss.

Daher wechseln wir jetzt auf das v-w-Koordinatensystem:

$$v_P = m_P - m_M$$

$$w_P = n_P - n_M$$

Mit diesen Koodinatenwerten berechnen wir die statistische Distanz k von dem Punkt M zu dem Punkt P.

Statistische Distanz k:

$$k = \sqrt{\left(\frac{v_p}{\hat{\sigma}_v}\right)^2 + \left(\frac{w_p}{\hat{\sigma}_w}\right)^2}$$

Aber für welchen Punkt *P* auf dem Toleranzkreis ergibt sich nun die kleinste statistische Distanz zu dem Punkt *M*? Da wir den Wert hier nicht mit Hilfe der Differenzialrechnung ermitteln wollen, wählen wir die direkte numerische Suche. Dazu erzeugen wir beispielsweise für die Variable *m* 100 Werte im Intervall von $m = m_M$ bis m = r. Anschließend bestimmen wir für jeden Wert der Variablen *m* den Funktionswert *n*:

$$n = +\sqrt{r^2 - m^2}.$$

Dann wechseln wir von dem *n*-*m*-Koodinatensystem auf das *v*-*w*-Koodinatensystem der Streu- Ellipse. Dazu bestimmen wir die Koordinatenwerte v_P und w_P wie folgt:

 $v_P = m - m_M$ und $w_P = n - n_M$

Mit den v_P – und w_P -Koordinatenwerten berechnen wir schließlich die statistische Distanz k:

$$k = \sqrt{\left(\frac{v_p}{\hat{\sigma}_v}\right)^2 + \left(\frac{w_p}{\hat{\sigma}_w}\right)^2}$$

Zusammenfassend sind die eben beschriebenen Rechenschritte in der folgenden Tabelle dargestellt. Für die darin gezeigten Ergebnisse wurden die folgenden, aus den vorhergehenden Berechnungen schon bekannten Werte verwendet:

 $m_M = 0,010\ 563\ 34\ mm, n_M = 0,013\ 498\ 22\ mm, \quad \hat{\sigma}_v = 0,033\ 447\ 582\ mm\ und \quad \hat{\sigma}_w = 0,023\ 452\ 681\ mm.$

m	$n=\sqrt{0,1^2-m^2}$	$v_p = m - m_M$	$w_p = n - n_M$	$k = \sqrt{\left(\frac{\nu_{p}}{\hat{\sigma}_{v}}\right)^{2} + \left(\frac{w_{p}}{\hat{\sigma}_{w}}\right)^{2}}$
0,010 563 34	0,099 440 51	0,000 000 00	0,008 594 23	3,664 498
0,011 466 74	0,099 340 39	0,000 903 40	0,008 584 21	3,660 328
0,012 370 14	0,099 231 95	0,001 806 80	0,008 573 37	3,656 004
:		:		
0,100 000 00	0,000 000 00	0,089 436 66	-0,001 349 82	2,735 176

Tragen wir grafisch die statistische Distanz k über die Werte der Variablen m auf, so erhalten wir folgende Darstellung:

Abbildung 4-6: Darstellung der statistischen Distanz k als Funktion der Variablen m

Anhand der Abbildung ist zu erkennen, dass die minimale statistische Distanz nahe dem Wert 2,6 zu erwarten ist. Mit einem numerischen Optimierungsverfahren erhalten wir:

 $m = 0,097\ 0.89\ 5 \ \text{und} \ k(m) = 2,625\ 0.29$

Für die Berechnung des minimalen Fähigkeitsindex P_{ok} verwenden wir also die minimale statistische Distanz:

 $k_{Pok} = 2,625\ 029.$