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Preface 
 

In this document we deal with two-dimensional position deviations. We do not consider the one-dimensional 

position deviations for lines and planes. 

In the first chapter we start with basics. Using an example, we look at how a Requirement for a position 

deviation is represented in a technical Drawing and how it is to be interpreted. We also clarify the question of 

how we get from the position measurement results to the values of the position deviation amounts. 

In the second chapter we deal with the handling, i.e. how a positional feature is created in the programme qs-

STAT, how the Positional tolerances are entered and how we carry out the evaluation. 

The calculation details for determining the Capability index can be found in the third chapter. 

Note: For the evaluation we have to consider that the calculation options for the Positional tolerances in the 

evaluation strategy can be set differently depending on the company. It is also possible that an evaluation 

strategy adjusted in this way allows for none calculation at all. Should this apply to the personal situation of a 

reader, he/she will also receive none evaluation results for the position deviations. 

The company Q-DAS supplies the programmes qs-STAT and destra in the module Sampling Analysis with 

the evaluation strategy "Q-DAS Machine Capability (06/2013)" and in the module Process Analysis with the 

evaluation strategy "Q-DAS Process Capability (06/2013)" (as of spring 2016). Both strategies include 

calculation and capability assessment. 

The present case study was developed with the programme qs-STAT to a large Part in the module 

"Sample Analysis" with the evaluation strategy "Q-DAS Machine Capability (06/2013)". In part, temporarily 

modified evaluation strategies were used in order to be able to adjust the calculation options for the position 

deviations. The sections affected by this contain corresponding notes. 
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1 Two-dimensional position deviations 
In this chapter we will look into the question of what a position deviation is. Let us assume the following excerpt 
from a technical Drawing (as a non-standard sketch) related to the position of a borehole.: 

 

Figure 1-1: Sketch of a toleranced position for a hole in a drill plate 
 

From the sketch we can see that the position of the hole - i.e. the centre of the hole - has been toleranced. The 
designer has provided that for manufacturing and metrological position determination the primary reference is 
edge A, the secondary reference is edge B and the tertiary reference is edge C. 
 

The diameter symbol  in front of the Positional tolerances tPS = 0,2 mm states that the positional deviation in the 

plane may occur radially in any direction. However, our definition is still incomplete, because the tolerance 
here is three-dimensional: The tolerated position deviation applies to the total length of the bore, i.e. into the 
depth of Figure 1-1 
. 
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Figure 1-2 shows the theoretically exact nominal centre axis of the bore as the intersection of the two 
symmetry planes drawn in green. Around this ideal position of the centre axis, the Tolerance cylinder with 

the diameter tPS is drawn in red. As long as the centre axis of the bore lies within the surface of this red 
Tolerance cylinder over its entire length, it is a permissible position deviation. 

 

Figure 1-2: Illustration of the Positional tolerances as a tolerance cylinder (red) with diameter tPs 
 

As a rule, we receive from the Measurement system as the measurement result of a position calibration 

measurement only the X- and Y-coordinate of the actual position (xact | yact)  to the largest measured position 
deviation, i.e. without the indication of the depth information (here: Z-coordinate). Here we have tacitly 
assumed that a Measurement system for determining the position deviation actually carries out several 
measurements at different depth levels of the borehole, but only outputs the one result of the maximum 
deviation as 2D information. 
 

Since the depth information is omitted, we determine the position deviation as the difference between the 
actual and target position with the vector calculation in the plane 
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1.1 Vector of the target position 

The nominal position of the hole is taken from the Drawing and has the following point coordinates in our 
numerical example: 
 

�⃗� 𝑡𝑎𝑟= (
𝑥𝑡𝑎𝑟 = 30,00 𝑚𝑚
𝑦𝑡𝑎𝑟 = 20,00 𝑚𝑚

) 

 

 

Figure 1-3: Sketch not drawn to scale to illustrate the vector for the target position, with the tolerance circle for the position 
deviation drawn in red. 
 

Now a drill plate was measured… 
 

1.2 Vector of the actual position 

Let the measurement result for the coordinates of the actual position be the vector: 
 
 

�⃗� 𝑐𝑢𝑟𝑟= (
𝑥𝑐𝑢𝑟𝑟 = 30,05 𝑚𝑚
𝑦𝑐𝑢𝑟𝑟 = 20,04 𝑚𝑚

) 
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Figure 1-4: Sketch not drawn to scale to illustrate the two position vectors for the actual and target position and the 
Variation of spread vector d for the position deviation 
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1.3 Position deviation as difference of the position vectors 

We obtain the vector of the position deviation from the difference of the two location vectors for the current and 
target position: 
 

�⃗� 𝑐𝑢𝑟𝑟 − �⃗� 𝑡𝑎𝑟= (
∆𝑥 = 𝑥𝑐𝑢𝑟𝑟 − 𝑥𝑡𝑎𝑟 = 30,00 𝑚𝑚
∆𝑦 = 𝑦𝑐𝑢𝑟𝑟 − 𝑦𝑡𝑎𝑟 = 20,00 𝑚𝑚

) = (
30,05𝑚𝑚 −  30,00 𝑚𝑚
20,04𝑚𝑚 −  20,00 𝑚𝑚

) = (
0,05 𝑚𝑚
0,04 𝑚𝑚

) 

 
The shortest distance between actual and target position corresponds to the length of this vector. 

 

1.3.1 Determining the length of the difference vector (actual position deviation) 

 

 

Figure 1-5: Sketch not drawn to scale to illustrate the Variations vector d, which describes the deviations of the actual 
position from the nominal position. 
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The magnitude or length of the vector 𝑑  is the Euclidean distance between the actual and the nominal position: 

|𝑑 | = √∆𝑥2 + ∆𝑦2 = √(𝑥𝑖𝑠𝑡 − 𝑥𝑠𝑜𝑙𝑙)
2 + (𝑦𝑖𝑠𝑡 − 𝑦𝑠𝑜𝑙𝑙)

2 

 
If we use the Values from our numerical example, we get: 

|𝑑 | = √(0,052 + 0,042)𝑚𝑚2 ≈ 0,06403𝑚𝑚 

 

As a rule, we do not use the simple amount | | of the vector, as this only expresses the radial distance between 

the actual and target position. The Positional tolerances tPS is given to us as a diameter. Therefore, it is 

obvious and also common to output the observed position deviation fPS as a diameter as well: 

𝑓𝑃𝑆 = 2 ∙ |𝑑 | ≈ 2 ∙ 0,06403𝑚𝑚 = 0,12806𝑚𝑚 

 

Note: We can set whether the calculated position deviations are to be output as radius or diameter in the 
evaluation strategy of the software (administrator rights required). 
 
To view or change the currently active calculation option, we select the menu command: 

Start | Evaluation strategy 

 
Figure 1-6: Calculation options for the "true-position" value in the software 
 

If the setting "no calculation" is active, no position deviation amounts are calculated and therefore not output. 
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1.3.2 Checking the Requirement for the Position Deviation 

With the "deviation diameter" fps from section 1.3.1 we check whether the Requirement for the position 

deviation is fulfilled. The acceptance condition is in words: The observed Actual Value for the position 

deviation fps should be less than or at most equal to the value of the position deviation tolerance 𝑡𝑃𝑆. This 

can be expressed "succinctly" as a formula. 

 

𝑓𝑃𝑆 ≤ 𝑡𝑃𝑆 

If the condition is fulfilled, the currently measured position is "OK". 
However, the assessment of individual units only makes sense if really every unit can be tested and assessed 
according to the criterion mentioned. Such 100% testing of the units is often not feasible due to the excessive 
duration of test and cost. 
 
One way out is monitoring with subgroups: We take a random subgroups with e.g. n = 5 units at regular 

intervals or after a fixed number of units and use this subgroup to check whether the process has 

manufactured the positional deviations fps "process-safely" within the positional tolerances tps. However, the 

use of statistical monitoring with subgroups is tied to the application prerequisite that the manufacturing 

process is able to produce the positions "process-safe” 
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2 Evaluate position deviations with qs-STAT 
 

In the first step, we create a position characteristic by hand in the Sample Analysis module of 

the qs-STAT programme. 

Note: Many producers of measuring machines equip their measuring machines with an interface for the Q-

DAS ASCII transfer format, so that we users do not have to worry about creating and entering manually. 

We start the programme qs-STAT and select Start | Module selection | Sample analysis 

 

Now we create a new Characteristic for the position deviation. We select File | New 

The window "Create new characteristics..." appears. 

 
Figure 2-1: Window "Create new characteristics" with the activated option "1 new Positional tolerances". 
 

In the window we set the Positional tolerances option to the value 1 and confirm our selection with OK. Now 
the following programme view appears: 
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Figure 2-2: View of the programme after creating a new Positional tolerance 
 

As can be seen from Figure 2-2 in the Parts / Characteristics List window, the Positional tolerances is a 

Characteristics group, which includes three Characteristics: 

 

Figure 2-3: Characteristics group Positional tolerances - consisting of the superordinate characteristic Positional deviation 
and the two subordinate characteristics for position measurement values per coordinate 

 

Now we click on the "Parts mask" window (if this was closed, we click Start | Parts mask) and fill it in as 

follows:  

Superordinate 
Characteristic: 

Position deviation 

Measured values of 
the actual position: y- 

and y-coordinate 
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Figure 2-4: Window "Parts mask", in which we only enter the part number "Ex PD" and the part designation "Positional 
deviation demonstration". 

We close the "Parts mask" window by clicking on OK. We now see the "Characteristics mask" window. If we 
have already closed this window by mistake, we open it again with the command Start | Characteristics mask. 

To make it easier to see for which of the three characteristics we are editing the fields in the 

characteristics mask, we show the characteristics list. To do this, we click in the menu on: 

Graphic settings | "Info" symbol 

 The window "Info" appears, in which we activate the option characteristic list. We confirm the setting 

with OK. 

 

Figure 2-5: Info window with activated feature list 

 

By activating it, we see the characteristics list at the left edge of the "Characteristics mask" window, in 

which the characteristics are displayed with the already known group structure. 

 

  



Software documentation  
 

QDas-1507  v-0.1 1 16/62 

 

 

Figure 2-6: View of the "Characteristics mask" window with the "Characteristics list" option activated 
 

We click on the parent Characteristic for the position deviation in the Characteristics list, which gives us 

access to the Properties fields for that Characteristic. In these we enter: 

 

Field name Input value remark 

Number PD  

Description Positional Deviation  

Unit mm Entry already exists 

Measured quantity True Position (Betrag) Entry already exists 
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 Now we switch to the first subordinate characteristic in the list of characteristics with a mouse click: 

 
Figure 2-7: View of the Characteristics mask window for the first subordinate characteristic (entry already made) 
 

We enter here: 

Field name Input value remark 

Number M1.X.Pos.  

Description M1.X Actual Position  

Up. Spec. Lim. 30,1  

Low. Spec. Lim. 29,9  

Unit mm Entry already exists 

Measured quantity X-Koordinate  

 

With reference to the example sketch in Figure 1-1 on page 3, we know that the nominal position of the 

borehole has the point coordinates (Xtar = 30 mm | Ytar = 20 mm) and the associated Positional tolerances are 
𝑡𝑃𝑆 = 0.2 𝑚𝑚. In the programme we have to calculate this Positional tolerances according to the following 
scheme 

 

Target ± 𝑡𝑃𝑆⁄2 

for each of the coordinate axes. 

The following Specification limits therefore result for the X-coordinate: 

 

𝑈𝑆𝐿 = 𝑋𝑡𝑎𝑟 +
𝑡𝑝𝑠

2
= 30𝑚𝑚 +

0,2𝑚𝑚

2
= 30,1𝑚𝑚 

𝐿𝑆𝐿 = 𝑋𝑡𝑎𝑟 −
𝑡𝑝𝑠

2
= 30𝑚𝑚 −

0,2𝑚𝑚

2
= 29,9𝑚𝑚 
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 We switch to the second subordinate characteristic and fill in the associated fields: 

Figure 2-8: View of the Characteristics Mask window after selecting the third characteristic (values already entered)) 
 

Field name Input value remark 

Number M1.Y.Pos.  

Description M1.Y Actual Position  

Up. Spec. Lim. 20,1  

Low. Spec. Lim. 19,9  

Unit mm Entry already exists 

Measured quantity X-Koordinate  

 

With reference to the example sketch in Figure 1-1 on page 3, we know that the nominal position of the 

borehole has the point coordinates (Xtar = 30 mm | Ytar = 20 mm) and the associated Positional tolerances are 
𝑡𝑃𝑆 = 0.2 𝑚𝑚. In the programme we have to calculate this Positional tolerances according to the following 
scheme 

Target ± 𝑡𝑃𝑆⁄2 

for each of the coordinate axes. 

The following Specification limits therefore result for the X-coordinate: 

 

𝑈𝑆𝐿 = 𝑌𝑡𝑎𝑟 +
𝑡𝑝𝑠

2
= 20𝑚𝑚 +

0,2𝑚𝑚

2
= 20,1𝑚𝑚 

𝐿𝑆𝐿 = 𝑌𝑡𝑎𝑟 −
𝑡𝑝𝑠

2
= 20𝑚𝑚 −

0,2𝑚𝑚

2
= 19,9𝑚𝑚 

The programme calculates the tolerance for the superordinate characteristic "position deviation" from the 

specification limits entered for the coordinate axes. I.e. we do not need to enter specification limits for 

the superordinate characteristic "position deviation". 
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Our next step is to enter the position measurement results in the "Value mask" window, which we call up 

as follows: 

Start | Value mask 

 

Figure 2-9: View of the Values mask window with the first entered pair of values of the measured actual positions of the 
borehole (X- and Y-coordinate)) 

We leave the first column with the designation "Positional Deviation" empty. This is, after all, the 

higher-level characteristic of the positional deviation. If the calculation option for the positional 

deviation amount is activated, the programme calculates the positional deviation amount 

automatically as soon as we have entered the positional measurement results. 

M1.X Actual Postion = 30,05 mm und M1.Y Actual Postion = 20,04 mm 

 

Figure 2-10: View of the Values mask after confirming the second input value - The higher-level Characteristic 
Position Deviation is calculated automatically1 

 

 

 

 

 

1 If the calculation is activated in the evaluation strategy, which is the case in the evaluation strategy used here 

"Q-DAS Machine Capability (06/2013)" is the case. 
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Now we have seen how the creation and input basically works. We prefer to dispense with the 

manual entry of further measurement results here and instead load an appropriately prepared file 

with 50 pairs of values.: 

File | File open 

In the file dialogue window we select the file "Positional_Deviation_Example.dfq" and confirm our 

selection with the "Open" command. 

 

2.1 Numerics evaluation 

What confuses many users when they first come into contact with Positional tolerances is the fact that we do 

not use the calculated Positional tolerances in our "qs-STAT" and "destra" programmes for the process 

capability evaluation. In principle, the evaluation of the deviation amounts can be set in the evaluation 

strategy, but this has a decisive disadvantage: 

We lose the information about the two-dimensional scattering behaviour in the evaluation of the deviation 

amount. For this reason, we use the calculation method "MPo2 max. Probability ellipse" in our standard 

evaluation strategies2 in the modules "Sample analysis" and "Process analysis", in which the two-dimensional 

scattering behaviour is taken into account. 

For the evaluation we choose: 

Results | form sheets 

The window "Form 3" opens, which contains the evaluation results for the superior characteristic 

(position deviation). 

 

 

 

 

 

 

 

 

 

 

2 In the module "Sample Analysis" the standard evaluation strategy is "Q-DAS Machine Capability (06/2013)" and in the 
module "Process Analysis" the standard evaluation strategy is "Q-DAS Process Capability (06/2013)". 
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Figure 2-11: Window "Form - Display 3" with the evaluation results for the superordinate Characteristic Position 
Deviation 
 

The details of the characteristic value determination according to the calculation method "MPo2 max. 
Probability ellipse" can be found in section 3.4 on page 29.  

On the basis of Figure 2-11 we can see: 

The capability index 𝑷𝒐 = 0.84 is smaller than the default value 𝑃𝑜𝑘𝑚𝑖𝑛 
= 1.67, therefore the 

Requirement not fulfilled. The reason is the too large deviation of the positions. 
 

The minimum capability index 𝑷𝒐𝒌 = 0.72 is smaller than the target value 
𝑃𝑜𝑘𝑚𝑖𝑛 

= 1.67, so this 

requirement is also not met. In addition to the scatter being too large, the mean position of the position 

measurement values is also shifted from the nominal position. 
 

Overall, the deviation of the borehole positions is too large. We cannot generate the borehole positions 

"safely" within the position tolerance. 
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2.2 Graphical evaluation  

We select the menu command: 

Graphics | Position Tolerances | X-Y Plot Position 

 
Figure 2-12: View of the x-y plot position window with the values of the case study. 
 

In Figure 2-12, the tolerance circle with diameter tPS = 0.2 mm is shown in red line color. The large green 

scatter ellipse belongs to the characteristic value 𝑃𝑜 and the small green scatter ellipse belongs to the 

characteristic value 𝑃𝑜𝑘. For individual details of the capability calculation, see Section 3.4. 

We can obtain further graphs for position tolerances with the commands listed below. These graphs are 

intended for data sets with several position features, when these are to be compared with each other: 

Graphics | Position Tolerances | Capability Indices Graphics | 

Box Plot Position 
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3 Types of capability calculation for position 
deviations 

In this chapter we look at the four calculation types available in the software for the capability evaluation of 

position deviations. All calculation type settings described in this chapter refer to the overall evaluation of 

the position deviation characteristic group. For some evaluations, the evaluation strategy had to be 

adapted. The sections affected by this contain corresponding notes. 

 

Note: The presentation of the calculation steps is not 100% identical with the algorithms as 

implemented in the programs qs-STAT, procella and destra. The algorithms implemented in our 

programs are therefore not presented here. 
 

All calculation steps presented here are intended to help the reader understand how to get from the position 

measurement results to the individual parameters of the process performance and capability. This 

understanding is necessary in order to be able to assess the statement and significance of the individual 

parameters and to make decisions for settings in the evaluation strategy. 
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3.1 Setting options for the calculation type (qs-STAT/destra) 

We call up the evaluation strategy view via the ribbon: 

Start | Evaluation strategy 

The "Evaluation" window appears, which contains a flowchart graphic of the evaluation steps. In the upper 

left corner of the flow chart graphic, the white rectangle with the label "Position tolerances Po / Pok: MPo2" 

can be seen. 

Note: If a different calculation type is set in the evaluation strategy used by the reader, the labeling of the 

box is usually also different than shown here. 

 

Figure 3-1: Evaluation window containing the evaluation strategy as a flowchart 
 

If we click with the mouse on this box, the window "Requirements position tolerances" opens. 

In the window "Requirements position tolerances" we click on the tab "Calculation type".  
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Figure 3-2: "Position Tolerance Requirements" window - "Calculation Type" tab 

Figure 3-2 shows the corresponding excerpt from the "Q-DAS Machine Capability (06/2013)" strategy. This 
evaluation strategy is the default setting, provided that no company-specific adjustments have been made (as 
of spring 2016). The calculation type activated in it is the procedure "MPo2 max. probability ellispe", which 
corresponds to the procedure "Type I" from the ISO 22514-6:2013 standard. 
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3.2 One-dimensional evaluation of the “true position” value 

We should always evaluate the two-dimensional, circularly defined position tolerances in two dimensions in 

order to have taken into account the two-dimensional scattering behaviour of the values. The one-

dimensional evaluation method described here first is not recommended for use, since this type of 

evaluation obscures the two-dimensional scattering behavior of the position measurement results. 

 

To activate a one-dimensional evaluation for the superordinate characteristic "Positional Deviations", we 

create a new evaluation strategy (administrator rights required!) and activate one of the available 

calculation types for one-dimensional characteristics in it. In the following figure, the calculation type " M42 

Percentil (0,135 %-50 % - 99,865 %)" has been selected as an example, which corresponds to the 

calculation method Ml=2, m=1 in the standard ISO 22514-2:2013 
 

 
Figure 3-3: Setting for the one-dimensional evaluation of the deviation amount (for calling up the window, see 
section 3.1 on page 21) 
 

Using this method, we obtain the evaluation results shown in Figure 3-5 for the case study data. 

Note: Please note that for two-dimensional, circularly defined position tolerances, the one-dimensional 

evaluation obscures the two-dimensional scattering behavior. 
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To the values of the characteristic "Positional Deviation" from the sample data set 
"Positional_Deviation_Example.dfq", the program selected and fitted the model "Weibull distribution" as the 
best fitting model. Furthermore, the program determined the two scatter limits of the 99.73 % random scatter 
range of this distribution: 

• Lower variation limit = 0,135 %-Quantil 𝑄0,135 %of the  Weibull-distribution 

• Upper variation limit = 99,865 %-Quantil 𝑄99,865 % of the Weibull-distribution  

 

The calculated values of these quantils are: 

𝑄0,135 % = −0,000 81 𝑚𝑚 

 

𝑄99,865 % = 0,230 57 𝑚𝑚 

In the histogram (see: Figure 3-4), the 0.135% quantile of the Weibull distribution is shown as line 𝑄𝑢𝑛3 and the 

99.865% quantile of the Weibull distribution is shown as line 𝑄𝑜𝑏3.  

Using these quantile values, we determine the process performance indices as follows: 

𝑃𝑜 =
𝑂𝑆𝐺 − 𝑈𝑆𝐺

𝑄99,865% − 𝑄0,135%

=
(0,2 − 0)𝑚𝑚

[0,23057 − (−0,00081)]
=

0,2𝑚𝑚

0,23138
≈ 0,86 

𝑃𝑜𝑘 =
𝑂𝑆𝐺 − 𝑄50%

𝑄99,865% − 𝑄50%

=
(0,2 − 0,07211)𝑚𝑚

[0,23057 − 0,07211]
≈ 0,81 

Note: The lower specification limit LSL is a natural limit and for this reason is ignored in the 𝑃𝑜𝑘 calculation 

We obtain the histogram of the position deviation amounts by opening the "Histogram - Single Values" window 

with the function key F4 or with the command Graphics | Histogram. 

 

Figure 3-4: Graphic histogram for the characteristic "Positional Deviation" with the distribution model Weibull distribution 
fitted to it (Graphics | Histogram)  
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We open the results window "Form - Representation 3" by pressing the function key F10. Alternatively, we can 

select the command Results | Form Sheets. 

The following result was generated with the program "qs-STAT" in the module "Sample Analysis" on the basis 

of the evaluation strategy " Po Pok univariat Absolut Value "3 , which cannot be selected in the program. 

 
 Figure 3-5: Window "Form - Display 3" with the evaluation result according to the univariate evaluation M2,1 according to ISO 22514-
2:2013 for the example data set "positional_deviation_example.dfq" (call with function key F10) 

 

 

 

 

 

3 The evaluation strategy " Po Pok univariat Absolut Value " was created temporarily for the calculation demonstration and 
was not included in the list of evaluation strategies available in the program due to its minor importance. 
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3.3 Calculation type "MPo max. absolut deviation 

 

Figure 3-6: "Position tolerance requirements" window with the set calculation type "MPo max. absolut deviation " 
(to call up this setting window, see section 3.1 on page 21) 

 

In the first step, we look at the 𝑥-𝑦-plot of the position measurement results and pick the value that has the 

largest radial distance 𝑑𝑒𝑢𝑘.𝑚𝑎𝑥 from the nominal position 

 

Figure 3-7: Representation of the position measurement results in the 𝑥-𝑦-plot with highlighting of the 
measurement result that has the largest radially measured distance from the nominal value 
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Formally, the largest radial distance corresponds to the largest value of all Euclidean distances, 

calculated from the actual and nominal positions: 

𝑑𝑖 = √(𝑥𝑖 − 𝑥𝑡𝑎𝑟)
2 + (𝑦𝑖 − 𝑦𝑡𝑎𝑟)

2; 𝑖 = 1,2, . . . , 𝑛 

𝑑𝑒𝑢𝑘.𝑚𝑎𝑥 = max (𝑑1, 𝑑2, … , 𝑑𝑛) 

 

With: 

𝑥𝑖= 𝑥 -coordinate of the actual position ; 𝑦𝑖 = 𝑦 -coordinate of the actual position. 

𝑥tar = 𝑥 -coordiante of nominal position ; 𝑦tar = 𝑦 -coordiante of nominal position 

𝑛 = number of values 

 

The value with the greatest radial distance from the nominal position has the actual position: 

𝑃curr = (𝑥𝑖=24 = 30,100 𝑚𝑚 | 𝑦𝑖=24 = 19,972 𝑚𝑚) 

 
As we can see from Figure 1-1 on page 3, the coordinates for the target position are: 

𝑃tar = (𝑥tar = 30,000 𝑚𝑚 | 𝑦tar = 20,000 𝑚𝑚) 

 
With this information we calculate the maximum Euclidean distance: 

𝑑𝑒𝑢𝑘.𝑚𝑎𝑥 = √(30,100 − 30,000)2𝑚𝑚2 + (19,972 − 20,000)2𝑚𝑚2 ≈ 0,10385 𝑚𝑚 

 

 

In the second step, we divide the tolerance circle radius (= 𝑡𝑃𝑆⁄2) by the Euclidean distance. The result is 

the minimum capability index Pok: 

𝑃𝑂𝐾 =
(
𝑡𝑝𝑠

2
)

𝑑𝑒𝑢𝑘.𝑚𝑎𝑥

≈
0,1𝑚𝑚

0,10385𝑚𝑚
≈ 0,96 
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The following result was generated with the program "qs-STAT" in the module "Sample analysis" on the 

basis of the evaluation strategy "Po Pok univariat Position Absolut Deviation"4 , which cannot be selected in 

the program. 

 

Figure 3-8: Window "Form - Display 3" with the evaluation result after the calculation type "MPo max. deviation 
amount" for the example data set "positional_deviation_example.dfq" (call with the function key F10) 

 

Note: We have to keep in mind that this type of calculation uses very little information from the sample 

data. Only one extreme value (!) is used for the ability calculation, which is why we do not recommend 

using this type of calculation. 

 

 

 

4 The evaluation strategy "Po Pok univariat Position Absolut Deviation" was created temporarily for the calculation 
demonstration and was not included in the list of evaluation strategies available in the program due to its minor 
importance. 
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3.4 Calculation type "MPo2 max. probability ellipse“ 

The program fits a two-dimensional normal distribution to the two-dimensional measured actual 

positions. 

 
Figure 3-9: 50 measurement results of the actual positions of boreholes with the fitted model of the two-dimensional normal 
distribution (light blue "grid mountain") 

Figure 3-9 shows the measurement results of 50 borehole positions together with the fitted model of the two-

dimensional normal distribution ("wireframe mountain"). The red circle represents the tolerance of the 

position deviation and has the diameter tPS. 

In the case of the two-dimensional normal distribution, the scatter range of the characteristic values is a scatter 

ellipse. In Figure 3-9 the 68.27 % random scatter range can be seen as a blue ellipse. Interpretation: As 

expected, 683 of 1,000 measured values lie within the circumference of the scatter ellipse 
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3.4.1 The two-dimensional normal distribution 

The probability density function of the two-dimensional normal distribution is generally: 

𝑔(𝑥; 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦√1 − 𝜌²
𝑒

{−
1

2(1−𝜌²
[(

𝑥−𝜇𝑥
𝜎𝑥

)
2
−2𝜌(

𝑥−𝜇𝑥
𝜎𝑥

)(
𝑦−𝜇𝑦

𝜎𝑦
)+(

𝑦−𝜇𝑦

𝜎𝑦
)
2
]}

 

The mean vector of the sample 

�̂� = (
�̅�
�̅�
) 

represents the estimator for the expected value of the two-dimensional normal distribution. Similarly, from the 

covariance matrix of the sample we obtain the estimator for the covariance matrix of the model distribution. 

Σ̂ = (
�̂�𝑥

2 �̂�𝑥𝑦

�̂�𝑥𝑦 �̂�𝑦
2 ) = (

𝑠𝑥
2 𝑠𝑥𝑦

𝑠𝑥𝑦 𝑠𝑦
2 ) 

For drawing the contours of equal probability density of the 2D normal distribution at a given probability 𝑃 = 1 − 
𝛼, we first determine the statistical distance of equal probability 𝑘1−𝛼 using the following relation: 

𝑘1−𝛼 = √𝜒2;1−𝛼
2 = √2𝑙𝑛 (

1

𝛼
) 

We then determine the lengths of the two ellipse semi-axes 𝑎 and 𝑏 as follows: 

𝑎 = 𝑘 ∙ �̂�𝑣 

𝑏 = 𝑘 ∙ �̂�𝑤  

with 

 

�̂�𝑣 = √
1

2
(�̂�𝑥

2 + �̂�𝑦
2) +

1

2
√(�̂�𝑥

2 − �̂�𝑦
2)

2
+ 4�̂�𝑥𝑦

2  

�̂�𝑤 = √
1

2
(�̂�𝑥

2 + �̂�𝑦
2) −

1

2
√(�̂�𝑥

2 − �̂�𝑦
2)

2
+ 4�̂�𝑥𝑦

2  

For drawing, we switch from the 𝑥-𝑦-coordinate system to the 𝑣-𝑤-coordinate system 
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Figure 3-10: Sketch illustrating the scattering ellipse with the original reference frame (𝑥-𝑦-coordinate system) and the 

rotated reference frame (𝑣-𝑤-coordinate system) of the scattering ellipse 

We determine the rotation angle between the 𝑥-axis of the old coordinate system and the 𝑣-axis of the new 

coordinate system as follows: 

𝛽𝑣 =

𝑎𝑟𝑐𝑡𝑎𝑛 (
2�̂�𝑥𝑦

(�̂�𝑥
2 − �̂�𝑦

2)
)

2
 

 

The inherent value of the covariance matrix Σ represent the variance in the direction of the two ellipse-

major axes (𝑣-𝑤-coordinate system) and we determine them with: 

�̂�𝑣
2 =

1

2
(�̂�𝑥

2 + �̂�𝑦
2) +

1

2
√(�̂�𝑥

2 − �̂�𝑦
2)

2
+ 4�̂�𝑥𝑦

2  

�̂�𝑤
2 =

1

2
(�̂�𝑥

2 + �̂�𝑦
2) −

1

2
√(�̂�𝑥

2 − �̂�𝑦
2)

2
+ 4�̂�𝑥𝑦

2  

 

  

Scatter - ellipse 

Rotated coordinate system 

Large semi-axis of the scatter - ellipse 

Small semi-axis of the scatter - ellipse 
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3.4.1.1 Parameter estimation for 2D-NV for the example data set 

Since within Section 3.4 the calculation results for the data of the case study 
"positional_deviation_example.dfq" are used repeatedly in several places, we summarize them here. 

Expected values 

 

�̂� = (
�̂�𝑥 = �̅�
�̂�𝑦 = �̅�

) = (
30,01376
20,01022

) 

with 

 

�̅� =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

≈ 30,01376𝑚𝑚 ;  �̅� =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

≈ 20,01022𝑚𝑚   

 

Covariance matrix 

Σ̂ = (
�̂�𝑥

2 �̂�𝑥𝑦

�̂�𝑥𝑦 �̂�𝑦
2 ) = (

0,00107888 −0,000145191
−0,000145191 0,000589889

) 

 

with the variance �̂�𝑥
2  ,  the variance �̂�𝑦

2 and the covariance �̂�𝑥𝑦         

 

�̂�𝑥
2 = 𝑠𝑥

2 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

≈ 0,001 078 88 𝑚𝑚² 

�̂�𝑦
2 = 𝑠𝑦

2 =
1

𝑛 − 1
∑(𝑦𝑖 − �̅�)2
𝑛

𝑖=1

≈ 0,000 589 889 𝑚𝑚² 

�̂�𝑥𝑦 = 𝑠𝑥𝑦 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑛

𝑖=1

≈ −0,000 145 191 𝑚𝑚² 

 

 

The calculation of the inherent values of the covariance matrix leads to the variances of the 2D normal 
distribution in the direction of the axes of the rotated 𝑣-𝑤 -coordinate system 

�̂�𝑣
2 =

1

2
(�̂�𝑥

2 + �̂�𝑦
2) +

1

2
√(�̂�𝑥

2 − �̂�𝑦
2)

2
+ 4�̂�𝑥𝑦

2 ≈ 0,001 118 741 𝑚𝑚² 

�̂�𝑤
2 =

1

2
(�̂�𝑥

2 + �̂�𝑦
2) −

1

2
√(�̂�𝑥

2 − �̂�𝑦
2)

2
+ 4�̂�𝑥𝑦

2 ≈ 0,000 550 028 𝑚𝑚² 
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From the square root of these inherent values, we obtain the standard deviations: 

 

�̂�𝑣 ≈ 0,033 447 582 𝑚𝑚²             

�̂�𝑤 ≈ 0,023 452 681 𝑚𝑚² 

 

The correlation between the variables 𝑥 and 𝑦: 

 

𝜚 =
�̂�𝑥𝑦

�̂�𝑥�̂�𝑦

≈ −0,181 999 

 

The rotation angle 𝜷𝒗 between the 𝑥-axis of the original 𝑥-𝑦-coordinate system and the 𝑣-axis of the new 𝑣-𝑤-

coordinate system is: 

 

𝛽𝑣 =

𝑎𝑟𝑐𝑡𝑎𝑛 (
2�̂�𝑥𝑦

(�̂�𝑥
2 − �̂�𝑦

2)
)

2
≈  −0,267 938 574 𝑟𝑎𝑑 

 

By multiplying by 
180

𝜋
 we determine the angels in the unit degrees: 

 

𝛽𝑣 ≈ −15,35 ° 
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3.4.2 Determination of the parameter Po according to DIN ISO 22514-6 

With the characteristic value 𝑷𝒐 we assess whether the dispersion of the position measurement values is 

basically small enough. The main difference in determining the characteristic value 𝑃𝑜 compared to 𝑃𝑜𝑘 is 

the fact that the actual mean position is ignored: mentally we shift the process distribution with its mean 

value exactly to the nominal position. Using the parameter 𝑃𝑜, we determine whether the positions now 

scattering around the nominal value can basically be generated "safely" within the tolerance circle with the 

diameter tps. 

Source of the procedure: The procedure described here corresponds to Type I according to ISO 22514-6: 

2013-02, which is referred to in the software as "MPo2 max. probabilitysellipse". 

We will look at the procedure here in step sequences. 

Step 1 - Shifting the Normal Distribution: We shift the two-dimensional normal distribution from the 

current mean position to the target value. The shift is illustrated by a small red arrow in Figure 3-11. 

  

Figure 3-11: Representation of the Po ellipse for the position measurement values of the case study 

Due to this shift, the process distribution is now in the "ideal position": Exactly centered on the setpoint. 

  

68,27% Scatter-Ellipse 

Tolerance circle 

Target-Position 

Average-Position 
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Step 2 - Determine the probability α: In this step we are looking for the probability 

α below the 2D normal distribution, which is outside the 𝑃𝑜-Ellipse shown in Figure 3-12: 

 

Figure 3-12: Illustration of the scattering ellipse just touching the tolerance circle and the vector 𝑑 𝑃𝑜 pointing to the 
point of contact 

 
First, we determine the minimum statistical distance5 between the nominal position and the tolerance 

circle point of contact: 

 

𝑘𝑃𝑜 = √(
𝑣𝑃𝑜

𝜎𝑣

)
2

+ (
𝑤𝑃𝑜

𝜎𝑤

)
2

 

 

 

In Figure 3-12, the vector 𝑑 𝑃𝑜 is shown in green. This vector has the coordinates 𝑣𝑃𝑜 =
𝑡𝑃𝑆

2
 and 𝑤𝑃𝑜 = 0. For 

these coordinates, the smallest statistical distance to the tolerance circle is given. 

 

 

5 What we refer to here as the "statistical distance" is often referred to in the literature as the "Mahalanobis distance". 
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Software documentation  
 

QDas-1507  v-0.1 1 39/62 

Using the data from the example, this gives us the following result for the minimum statistical 

distance: 

𝑘𝑃𝑜 = √(
𝑣𝑃𝑜

𝜎𝑣

)
2

+ (
𝑤𝑃𝑜

𝜎𝑤

)
2

≈ √(
0,1 𝑚𝑚

0,033 447 583 𝑚𝑚
)
2

+ 0 ≈
0,1 𝑚𝑚

0,033 447 583 𝑚𝑚
≈ 2,989 753 

 

with 

 

𝑣𝑃𝑜 =
𝑡𝑃𝑆

2
=

0,2 𝑚𝑚

2
= 0,1 𝑚𝑚 

�̂�𝑣 = √
1

2
(�̂�𝑥

2 + �̂�𝑦
2) +

1

2
√(�̂�𝑥

2 − �̂�𝑦
2)

2
+ 4�̂�𝑥𝑦

2 ≈ 0,033 447 6 𝑚𝑚 

�̂�𝑥
2 = 𝑠𝑥

2 = [
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

]𝑚𝑚² ≈ 0,001 078 88 𝑚𝑚² 

�̂�𝑦
2 = 𝑠𝑦

2 = [
1

𝑛 − 1
∑(𝑦𝑖 − �̅�)2
𝑛

𝑖=1

]𝑚𝑚² ≈ 0,000 589 889 𝑚𝑚² 

�̂�𝑥𝑦 = 𝑠𝑥𝑦 = [
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑛

𝑖=1

]𝑚𝑚² ≈ −0,000 145 191 𝑚𝑚² 

 

 

Finally, we compute the probability volume 𝛼 of the 2D normal distribution, which is 

is outside the 𝑷𝒐-Ellipse. 

𝛼 = 𝑒−(
1
2
𝑘𝑃𝑜

2 )
≈ 0,011 455 21 

 

Note: We must note that the probability 𝛼 calculated here describes the fraction outside the 𝑃𝑜-Ellipse and not 

the expected fraction of exceedance outside the tolerance circle with exact process centering. For this reason, 
we cannot use the probability 𝛼 to estimate the expected fraction of nonconforming units under exact process 
centering 
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Step 3 - Determine the probability Ppo: 
 

Now a "reinterpretation" of the probability volume 𝛼 takes place: 

 

Figure 3-13: Illustration of how the probability volume α of the two-dimensional normal distribution is reinterpreted as the two-
sided excess part of a one-dimensional standard normal distribution 
 

We think of the probability volume 𝛼 below the two-dimensional normal distribution as a two-sided split 

excess portion of a one-dimensional standard normal distribution (see Figure 3-13). 

In Figure 3-14, the probability 𝛼⁄2 is shown in red and the complementary probability 𝑃𝑃𝑜 = 1 −
𝛼

2
 is shown in 

pale blue 

 

Figure 3-14: Standard normal distribution with probability 𝑃𝑃𝑜 and associated quantile 𝑧𝑃𝑃𝑜 

The value of the probability 𝑃𝑝𝑜 we are looking for is 

𝑃𝑃𝑜 = 1 −
𝛼

2
≈ 0,994 272 4  

Two-dimensional normal distribution Standard normal distribution 

Probability volume  𝛼 

Probability volume 1-𝛼 
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Step 4 - Determine the quantile of the one-dimensional standard normal distribution: 

We calculate the quantile to probability PPo using the inverse distribution function (quantile function) of the one-

dimensional standard normal distribution 

𝑧𝑃𝑃𝑂
= 𝐺−1(𝑃𝑃𝑜 = 0,994 272 4) ≈ 2,528 497 

 

with 

𝐺−1 = inverse distribution function of the one-dimensional standard normal distribution 

 

Step 5 - Calculation of the capability parameter Po: 
 

To determine this parameter, we divide the quantile calculated in step 4 by three. 

 

𝑃𝑂 =
𝑧𝑃𝑃𝑂

3
≈

2,528 497

3
≈ 0,84 

 

 

The requirement is considered satisfied if the calculated Po-value is greater than or equal to the specified 

minimum 𝑃𝑜𝑚𝑖𝑛
 

𝑃𝑜 ≥ 𝑃𝑜𝑚𝑖𝑛
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3.4.3 Determination of the parameter Pok according to DIN ISO 22514-6  

With the parameter Pok we judge whether the scatter of the (model) distribution of the position 

measurements, taking into account the actual mean value position, is small enough to be able to 

produce the positions "safely" within the tolerance circle. 

Source of the procedure: The procedure described here corresponds to Type I according to ISO 22514-6: 

2013-02. This procedure is referred to in the software as "MPo2 max. probability ellipse". 

 

Compared to Section 3.4.2, only the first step is identical, in which the determination of the parameter 
estimators for the two-dimensional normal distribution takes place. 
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Step 2 - Determine the probability α for the scattering ellipse touching the tolerance circle: 
From Figure 3-15 we can see that the normal distribution (and thus the ellipse) is not in the nominal position. 

The actual mean position is used and thus taken into account. 

 

Figure 3-15: Illustration of the 𝑃𝑜𝑘--Ellipse showing the distances 𝑣𝑃𝑜𝑘 and 𝑤𝑃𝑜𝑘 

 

The probability volume 𝛼∗ of the two-dimensional normal distribution that is outside the scattering ellipse 

touching the tolerance circle (see Figure 3-15) is sought. 

To do this, first determine the minimum statistical distance6 𝑘𝑃𝑜𝑘 between the ellipse center and the 

tolerance circle: 

𝑘𝑃𝑜𝑘 = √(
𝑣𝑃𝑜𝑘

�̂�𝑣

)
2

+ (
𝑤𝑃𝑜𝑘

�̂�𝑤

)
2

 

In the Figure 3-15, in green color, the vector 𝑑 𝑃𝑜𝑘  is shown. With the coordinates 𝑣𝑃𝑜𝑘 and 𝑤𝑃𝑜𝑘 of this 

vector, the minimum statistical distance to the tolerance circle is obtained. The procedure for determining 

the minimum statistical distance is more complex, so we have moved the presentation to the appendix and 

omit the details of the determination here. For the data of the case study we obtain the minimum statistical 

distance 

𝑘𝑃𝑜𝑘 ≈ 2,625 029 

 

6 What we refer to here as "statistical distance" is often called "Mahalanobis distance.". 
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Using the minimum statistical distance 𝑘𝑃𝑜𝑘, we compute the probability volume 𝛼∗ that is outside the 𝑷𝒐𝒌-

Ellipse: 

𝛼∗ = 𝑒−(
1
2
𝑘𝑃𝑜

2 )
≈ 𝑒−(

1
2
2,625 0292)

≈ 0,031 892 

 

Note: Again, it should be noted that the calculated probability describes the expected fraction outside the 

𝑃𝑜𝑘-Ellipse. Thus, this probability is not the expected exceedance fraction outside the tolerance circle. For 

this reason, we cannot use the probability 𝛼∗ to estimate the expected fraction of nonconforming units 

 

Step 3 - Determine the probability 𝑷𝑷𝒐𝒌
 

Again, the "reinterpretation" of the probability 𝛼∗ as a two-sided split excess fraction of a one-

dimensional standard normal distribution is done, quite analogous to the description for steps three and 

four in Section 3.4.2. We determine the probability we are looking for as follows 

𝑃𝑃𝑜𝑘 = 1 −
𝛼∗

2
≈ 0,984 054 

 

 

Step 4 - Determine the quantile 𝒛𝑷𝑷𝒐𝒌
 

Using the inverse distribution function of the one-dimensional standard normal distribution (quantile 

function), we calculate the quantile 𝑧𝑃𝑃𝑜𝑘 
: 

𝑧𝑃𝑃𝑜𝑘
= 𝐺−1(𝑃𝑃𝑜𝑘) ≈ 2,145 757 

 
 
Step 5 - Calculate the minimum capability index Pok 

We obtain the minimum ability index Pok by dividing the quantile 𝑧𝑃𝑃𝑜𝑘 
by the value 3 

𝑃𝑜𝑘 =
𝑧𝑃𝑃𝑜𝑘

3
≈ 0.715 252 ≈ 0,72 

 

The requirement is considered to be met if the minimum capability index is greater than or at least equal 

to the specified minimum value: 

𝑃𝑜𝑘 ≥ 𝑃𝑜𝑘𝑚𝑖𝑛 
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 The following result was generated with the program qs-STAT in the module "Sample Analysis" based on 

the evaluation strategy "Q-DAS Machine Capability (06/2013)": 

 

Figure 3-16: Window "Form - Display 3" with the calculation result according to the calculation method "MPo2 max. 
probability ellipse" for the example data set "positional_deviation_example.dfq" (call with function key F10) 
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3.5 Calculation type "MPo3 max. probability ellipse / line“ 

This method is roughly related to the "MPo2 max. probability ellipse" calculation method, but avoids its 

numerical disadvantages. That is, here we bypass the determination of the probability volume below the 2D 

normal distribution and also the subsequent determination of the inverse distribution function (quantile) of the 

one-dimensional standard normal distribution. 

3.5.1 Determining the parameter Po 

In the first step we estimate all parameters according to section 3.4.1. In this procedure we also need the 

minimum statistical distance 𝑘𝑃𝑜 between the ellipse center and the tolerance circle. Here, the ellipse 

center is shifted to the nominal position. 

 

Figure 3-17: Illustration of the scattering ellipse touching the tolerance circle with the vector 𝑑 𝑃𝑜  pointing to the point of contact, whose 

vector coordinates are  𝑣𝑃𝑜 =
𝑡𝑃𝑆

2
 and  𝑤𝑃𝑜 = 0 

Figure 3-17 shows the vector 𝑑 𝑃𝑜 pointing to the point of contact. This vector has the coordinates 𝑣𝑃𝑜 =
𝑡𝑃𝑆

2
=

0,1𝑚𝑚  and 𝑤𝑃𝑜 = 0. With these coordinates we determine the minimum statistical distance 𝑘𝑃𝑜 

𝑘𝑃𝑜 = √(
𝑣𝑃𝑜

�̂�𝑣

)
2

+ (
𝑤𝑃𝑜

�̂�𝑤

)
2

≈ √(
0,1 𝑚𝑚

0,033 447 583 𝑚𝑚
)
2

+ 0 ≈
0,1 𝑚𝑚

0,033 447 583 𝑚𝑚
≈ 2,989 753 

Now we divide the minimum statistical distance 𝑘𝑃𝑜 by three and get the performance index 𝑷𝒐: 

𝑃𝑂 =
𝑘𝑃𝑜

3
≈

2,989 753

3
≈ 0,996 584 ≈ 1,00 

  

Point of 
contact 

Target-Position 

Tolerance circle 

Po - Ellipse 

Vector to the Point of contact 
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3.5.2 Determination of the parameter Pok 

To determine the parameter Pok we need the minimum statistical distance between the ellipse center and the 

tolerance circle contact point. The ellipse center is not shifted and corresponds to the mean value of the 

observation data. Figure 3-18 shows the scatter ellipse just touching the tolerance circle. 

 

Figure 3-18: Illustration of the vector 𝑑 𝑃𝑜𝑘 pointing to the touch point with vector coordinates 𝑣𝑃𝑜𝑘 and 𝑤𝑃𝑜𝑘 

 

The vector 𝑑 𝑃𝑜𝑘 points to the touch point and has vector coordinates 𝑤𝑃𝑜𝑘 and 𝑣𝑃𝑜𝑘.. Using these vector 

coordinates, we calculate the minimum statistical distance 𝑘𝑃𝑜𝑘: 

𝑘𝑃𝑜𝑘 = √(
𝑣𝑃𝑜𝑘

𝜎𝑣

)
2

+ (
𝑤𝑃𝑜𝑘

𝜎𝑤

)
2

≈ 2,625 029 

The details of how to determine the minimum statistical distance is moved to the appendix due to 

greater complexity. 

 

Dividing the minimum statistical distance 𝑘𝑃𝑜𝑘 by the value 3, we obtain the minimum 

performance index 𝑷𝒐𝒌: 

𝑃𝑜𝑘 =
𝑘𝑃𝑜𝑘

3
≈

2,625 029

3
≈ 0,875 010 ≈ 0,88 

  

Point of 
contact 

Target-Position 

Tolerance circle 

Pok - Ellipse 

Vector to the Point of contact 
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The following evaluation result was created with the program "qs-STAT" in the module "Sample Analysis" on 
the basis of the evaluation strategy "Q-DAS Machine Capability (01/2020)" ,. 

  

Figure 3-19: Window "Form - Display 3" with the result of the capability calculation according to the calculation type "Q-
DAS Machine Capability (01/2020)" for the data set "Postional_Deviation_Example.dfq" (call with function key F10) 
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3.6 Method MPo A1 [AFNOR E60-181] 

This method is only available in the process capabilityanalysis module and is described in the French 

standard AFNOR E 60-181: 01-2001, section 4.7.8. 

 

Figure 3-20: Calculation type MPo A1 [AFNOR E60-181] in the Process Analysis module 
 

The capability calculation is based on the deviation amounts from the mean. That is, in the first step we 

determine the Euclidean distances to the mean: 

𝑟𝑖 = √(𝑥𝑖 − �̅�)2 + (𝑦𝑖 − �̅�)2; 𝑖 = 1,2, … , 𝑛 

 

 
In the second step, we calculate the mean value for the deviation amounts and the 

Standard deviation: 

 

r̅ =
1

𝑛
∑𝑟𝑖

𝑛

𝑖=1

 

𝑠𝑝 = √
1

𝑛 − 1
∑(𝑟𝑖 − �̅�)2

𝑛

𝑖=1
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In the third step, we calculate the performance index Cap: 
 

𝐶𝑎𝑝 =
𝑇𝐺

𝐷𝑝

 

 

Mit 

𝑇𝐺 =
𝑡𝑃𝑆

2
 

𝐷𝑝 = 5.55 ∙ 𝑠𝑝 

 

In the fourth and final step, we calculate the minimum performance index Cpk: 
 

𝐶𝑝𝑘 =
(𝑇𝐺 − �̅�)

𝐷𝑝

 

 
 

For the data from the example dataset "positional_deviation_example.dfq" we get: 

𝐶𝑎𝑝 =
𝑇𝐺

𝐷𝑝

=
0,1 𝑚𝑚

0,105 464 887 𝑚𝑚
≈ 0,948 

𝐶𝑝𝑘 =
(𝑇𝐺 − �̅�)

𝐷𝑝

=
(0,1 − 0,035 798 242)𝑚𝑚

0,105 464 887 𝑚𝑚
≈ 0,609 

 

mit 

r̅ = 0,035 798 242 𝑚𝑚 

𝑠𝑝 = 0,019 002 682 𝑚𝑚 

𝐷𝑝 = 5.55 ∙ 𝑠𝑝 = 0,105 464 887 𝑚𝑚 

𝑇𝐺 =
𝑡𝑃𝑆

2
=

0,2 𝑚𝑚

2
= 0,1 𝑚𝑚 
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The following result was created with the program qs-STAT in the module "Process Analysis" on the basis 

of the evaluation strategy "AFNOR E 60-181". 

 

Figure 3-21: Window "Form - Representation 3" with the evaluation result according to the method 

MPo A1 [AFNOR E60-181] for the example data set "positional_deviation_example.dfq" (call with function key F10) 
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4 Appendix 

4.1 Determine the statistical distance for the 𝑷𝒐𝒌-Ellipse 

We consider here the details about the second step from the Pok calculation, where the minimum statistical 
distance 𝑘 between the mean of the position measurement results 𝑀 and the tolerance circle has to be 
determined. 

We need to find the exact point on the circumference of the circle that has the smallest statistical distance 

to the point 𝑀. What makes life difficult for us in this search is the fact that the position of the 𝑣-𝑤-

coordinate system is shifted and twisted with respect to the 𝑥-𝑦-coordinate system. 

 

Figure 4-1: The original 𝑥-𝑦-coordinate system is rotated so that it is oriented at the same angle to the 𝑣-𝑤-coordinate 
system. 

  

Average 

Rotation angle of the 
scattering ellipse  
(and the new C' - system) 
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4.1.1 Rotation of the coordinate system 

To make it easier for our calculations, we first rotate the original 𝑥-𝑦- coordinate system so that it is exactly 

aligned with the 𝑣-𝑤-coordinate system of the scattering ellipse. We refer to the resulting new coordinate 

system here as the 𝑛-𝑚-coordinate system. This rotation results in different coordinate values for the mean 𝑀 
in the new 𝑛-𝑚-coordinate system than in the old 𝑥-𝑦-coordinate system. The next three sections show the 

determination of these new 𝑛- and 𝑚-coordinate values for the point 𝑀. 
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4.1.2  Determine the vector from the target position to the mean position 𝑴 
 

 

Figure 4-2: Vector 𝑙 in the original 𝑥-𝑦 coordinate system  

We already know the coordinates of the point 𝑀 from our mean (Section 3.4.1) in the original 𝑥-𝑦 coordinate 

system. 

𝑥𝑀  = 30.013 76 𝑚𝑚 

𝑦𝑀   = 20,010 22 𝑚𝑚 

and the nominal position (section 1.1): 

𝑥tar   =  30,000 𝑚𝑚 

𝑦tar   =  20,000 𝑚𝑚 

Mit diesen Informationen berechnen wir den Betrag |𝑙 |  und den Winkel 𝛼 des Vektors 𝑙     

With this information, we calculate the magnitude and angle 𝛼 of the vector     

|𝑙 | = √(𝑥𝑀 − 𝑥𝑡𝑎𝑟)
2 + (𝑦 − 𝑦𝑡𝑎𝑟)

2 

|𝑙 | = √(30,013 76 𝑚𝑚 − 30,000 00 𝑚𝑚)2 + (20,010 22𝑚𝑚 − 20,000 00 𝑚𝑚)2 

|𝑙 | = √0,013 762𝑚𝑚2 + 0,010 222𝑚𝑚2 = 0,017 140 187 𝑚𝑚 

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛
(𝑥𝑀 − 𝑥𝑡𝑎𝑟)

(𝑦𝑀 − 𝑦𝑡𝑎𝑟)
 

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛
(30,013 76 𝑚𝑚 − 30,000 00 𝑚𝑚)

(20,010 22 𝑚𝑚 − 20,000 00 𝑚𝑚)
= 0,638 833 7 𝑟𝑎𝑑 

  



Software documentation  
 

QDas-1507  v-0.1 1 55/62 

4.1.3 Determine the angle 𝜹 of the vector 𝒍  in the 𝒏-𝒎-coordinate system 

Figure 4-3 shows the angle 𝛿 of the vector 𝑙  .This angle defines the location of the vector in the new 𝑛-𝑚 

coordinate system. Now we determine the value of this angle:  

 

 

Figure 4-3: Plot of the angle 𝛿 of the vector 𝑙  in the 𝑛-𝑚 coordinate system 
 

It is known from previous calculations: 

𝛼 = 0,638 833 7 𝑟𝑎𝑑 

𝛽 = −0,267 938 574 𝑟𝑎𝑑 

With these values, we calculate the angle 𝛿 considering the mathematical direction of rotation 

(counterclockwise). 

Angle of the vector 𝑙 in the 𝑚-𝑛 coordinate system: 𝛿 = 𝛼 - 𝛽 

𝛿 = 0,638 833 7 𝑟𝑎𝑑 − (−0,267 938 574 𝑟𝑎𝑑) = 0,906 772 27 𝑟𝑎𝑑 

 
  



Software documentation  
 

QDas-1507  v-0.1 1 56/62 

4.1.4 Coordinates of the vector 𝒍  in the 𝒏-𝒎-coordinate system 

Now we determine the coordinates 𝑛𝑀 and 𝑚𝑀 for our mean (point 𝑀) in the new 𝑛-𝑚 coordinate system 

 

Figure 4-4: Illustration of the coordinates 𝑚𝑀 and 𝑛𝑀 

Note: To simplify the calculations, the target position in the 𝑚-𝑛-coordinate system was simply set to zero. 

The target position is shown as a point (0 | 0) in Figure 4-4. 

 

Known from previous calculations: 

Amount of the vector  𝑙                              |𝑙 |  = 0,017 140 187 𝑚𝑚 

Angel of the vector  𝑙  𝛿 = 0,906 772 27 𝑟𝑎𝑑 

 

Coordinate of the vector  𝑙  in the direction of the 𝑚-axis  

 

Coordinate of the vector 𝑙 in the direction of the 𝑛-axis: 
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Software documentation  
 

QDas-1507  v-0.1 1 58/62 

4.1.5 Determining the statistical distance 𝒌 from the mean value 𝑴 to the tolerance circle 

Now consider determining the statistical distance 𝑘 between the mean position 𝑀 and any point P on the 
perimeter of the tolerance circle. 

To determine any point 𝑃 on the circumference of the tolerance circle, we need the circle equation: 

 

With  

 

To obtain the coordinates for any point 𝑃 on the perimeter of the tolerance circle, we first choose a 

value for the variable 𝑚𝑃 (in the interval -𝑟 ≤ 𝑚𝑃 ≤ 𝑟). 

We then determine the associated value of the variable 𝑛𝑃 using the circular formula: 

 

Looking at Figure 4-5, we see that the smallest statistical distance for this case study is to be found in the 

first quadrant of the 𝑚-𝑛-coordinate system (So, thought of as the hand position of a clock, it is in the range 

between 12:00 and 03:00): 

 

Figure 4-5: Representation of the vector from the point M to the point P with all associated vector components 
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Further, we can see from Figure 4-5 that the statistical distance for the distance between the mean 𝑀 and the 

point 𝑃 must be calculated using the vector components 𝑣𝑝 and 𝑤𝑝 in the 𝑣-𝑤 coordinate system of the 

scattering ellipse. 
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Therefore, we now switch to the 𝑣-𝑤 coordinate system: 

𝑣𝑃  =  𝑚𝑃  − 𝑚𝑀 

𝑤𝑃   = 𝑛𝑃  − 𝑛𝑀 

Using these coodinate values, we calculate the statistical distance 𝑘 from the point 𝑀 to the point 𝑃. 

Statistical distance 𝑘: 

 

But for which point 𝑃 on the tolerance circle does the smallest statistical distance to the point 𝑀 result? 

Since we do not want to determine the value here using differential calculus, we choose the direct 

numerical search. To do this, for example, we generate 100 values for the variable 𝑚 in the interval from 𝑚 

= 𝑚𝑀 to 𝑚 = 𝑟. Then, for each value of the variable 𝑚, we determine the function value 𝑛: 

 

Then we switch from the 𝑛-𝑚-coodinate system to the 𝑣-𝑤-coodinate system of the scattering ellipse. To do 

this, we determine the coordinate values 𝑣𝑃 and 𝑤𝑃 as follows: 

𝑣𝑃 = 𝑚 − 𝑚𝑀 und 𝑤𝑃 = 𝑛 − 𝑛𝑀 

Finally, using the 𝑣𝑃 − und 𝑤𝑃 -coordinate values, we calculate the statistical distance 𝑘: 
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The calculation steps just described are summarized in the following table. 

For the results shown therein, the following values, already known from the previous calculations, were 

used: 

𝑚𝑀  = 0,010 563 34 𝑚𝑚, 𝑛𝑀  = 0,013 498 22 𝑚𝑚,    �̂�𝑣= 0,033 447 582 𝑚𝑚 und    �̂�𝑤  = 0,023 452 681 𝑚𝑚. 
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If we graphically plot the statistical distance 𝑘 over the values of the variable 𝑚, we obtain the following plot: 

Statistical distance k as a function of the variables m 

 

Figure 4-6: Representation of the statistical distance k as a function of the variables m 
 

From the figure, it can be seen that the minimum statistical distance is expected to be close to the value 

2.6. Using a numerical optimization procedure we obtain: 

𝑚 = 0.097 089 5 and 𝑘(𝑚) = 2.625 029 

Thus, to calculate the minimum capability index 𝑃𝑜𝑘, we use the minimum statistical 

distance: 

𝑘𝑃𝑜𝑘 = 2.625 029. 

 
 

 


	1 Two-dimensional position deviations
	1.1 Vector of the target position
	1.2 Vector of the actual position
	1.3 Position deviation as difference of the position vectors
	1.3.1 Determining the length of the difference vector (actual position deviation)
	1.3.2 Checking the Requirement for the Position Deviation


	2 Evaluate position deviations with qs-STAT
	2.1 Numerics evaluation
	2.2 Graphical evaluation

	3 Types of capability calculation for position deviations
	3.1 Setting options for the calculation type (qs-STAT/destra)
	3.2 One-dimensional evaluation of the “true position” value
	3.3 Calculation type "MPo max. absolut deviation
	3.4 Calculation type "MPo2 max. probability ellipse“
	3.4.1 The two-dimensional normal distribution
	3.4.1.1 Parameter estimation for 2D-NV for the example data set

	3.4.2 Determination of the parameter Po according to DIN ISO 22514-6
	3.4.3 Determination of the parameter Pok according to DIN ISO 22514-6

	3.5 Calculation type "MPo3 max. probability ellipse / line“
	3.5.1 Determining the parameter Po
	3.5.2 Determination of the parameter Pok

	3.6 Method MPo A1 [AFNOR E60-181]

	4 Appendix
	4.1 Determine the statistical distance for the 𝑷𝒐𝒌-Ellipse
	4.1.1 Rotation of the coordinate system
	4.1.2  Determine the vector from the target position to the mean position 𝑴
	4.1.3 Determine the angle 𝜹 of the vector ,𝒍. in the 𝒏-𝒎-coordinate system
	4.1.4 Coordinates of the vector ,𝒍. in the 𝒏-𝒎-coordinate system
	4.1.5 Determining the statistical distance 𝒌 from the mean value 𝑴 to the tolerance circle



